
Fundamental Computer Science

Malin Rau and Denis Trystram

9th of March, 2020

Introduction to Approximation Algorithms

Decision Problem vs Optimization Problem

So far: Decision problems:

I Is there a Vertex Cover of size k in G?

I Is the given formula satisfiable?

Now: Maximization or Minimization problems:

I Find a smallest Vertex Cover in G.

I Find a largest Clique in G.

I Find the largest Independent Set in G.

Obstacle: For all the problems for which the decision variant is NP -hard,
we cannot hope to find an polynomial time algorithm to solve the
corresponding maximization or minimization problem, unless P = NP .

Why?

Approximation Algorithms: Definition

An algorithm A for a minimization problem Π is called α-approximation
if for each instance I ∈ Π it holds that

A(I) ≤ α ·OPT(I)

Examples: Vertex Cover, Bin Packing

An algorithm A for a maximization problem Π is called α-approximation
if for each instance I ∈ Π it holds that

α ·A(I) ≥ OPT(I)

Examples: Independent Set, Clique, Max-2Sat, Knapsack

The {0, 1}-Knapsack Problem

I Given: A container (knapsack) of size B ∈ N, and a set of items I,
such that each i ∈ I has a size s(i) ∈ {1, . . . , B} and a profit
p(i) ∈ N.

I Decision Problem: Is there a subset I ′ ⊂ I that fits inside the
container and has profit P?

I Optimization Problem: Find a subset I ′ ⊂ I that fits inside the
container and maximizes the profit of the items.

max
I′⊆I

∑
i∈I′

p(i)

subject to
∑
i∈I′

s(i) ≤ B (I ′ fits inside the container)

Remark:
Each item fits inside the bin on its own since s(i) ≤ B for each i ∈ I.

Example

Knapsack size: 15

items 1 2 3 4 5
size 12 2 1 1 4
profit 4 2 2 1 10

Optimum?

Take the items 2,3,4,5.
Total Profit: 15
Total Size: 8

{0, 1}-Knapsack is NP -hard

Subset Sum (Decision Problem)
Given: A set of positive integer numbers I = {i1, . . . , in}, a positive
number S
Question: Is there a subset I ′ ⊆ I such that the sum of the numbers in
I ′ equal S, i.e.,

∑
i∈I′ i = S?

Theorem

Subset Sum is NP-complete.

Exercise:
Prove: If there exists a polynomial time algorithm that solves the
optimization problem {0, 1}-Knapsack, then there exists a polynomial
time algorithm that decides Subset Sum.

Corollar

There exists no polynomial time algorithm for the optimization problem
{0, 1}-Knapsack unless P = NP .

Solution of the exercise

Proof:
In the following we describe an algorithm that decides the Subset Sum
problem in polynomial time if there exits a polynomial time algorithm A
that finds the optimal solution for each instance of the {0, 1}-Knapsack
problem.

I Given an instance (I = {i1, ..., in}, S) of the Subset Sum problem
generate an instance of the knapsack problem as follows:
I Define B := S.
I For each ij ∈ I define one item j with profit p(j) := ij and size

s(j) := ij and define I as the set of all these items.

I Solve the generated instance optimally with the polynomial time
algorithm for {0, 1}-Knapsack.

I If the packed profit equals B return Yes otherwise return No.

The above algorithm works in time polynomial of the input size of (I, S).

Solution of the exercise

It reminds to be shown that the algorithm is correct.

If (I, S) is a yes-instance there exists a set of items I ′ ⊆ I such that∑
i∈I′ i = S. The corresponding items all fit inside the container. Hence

the solution of the algorithm for the {0, 1}-Knapsack problem has at
least profit S = B. On the other hand, the container cannot contain a
set with larger profit, since all the items have the same profit as size.
Hence the algorithm returns Yes in this case.

On the other hand, if the {0, 1}-Knapsack algorithm returns Yes, it
has a solution with profit B = S. Hence, there exists a set of items
which profits and sizes sum up to exactly S. Therefore, there exists a
subset I ′ ∈ I with

∑
i∈I′ i = S. As a consequence, the given instance

(I, S) is a yes-instance.

A First Algorithmic Idea

Define the efficiency of an item as e(i) := p(i)/s(i).

Algorithm NaiveGreedy:
Sort the items by efficiency. Greedily take the most efficient item until
the next item does not fit inside the container.

Exercise:
Prove that this algorithm has no constant approximation ratio.

Hint 1 : Denote by NaiveGreedy(I) the profit of the solution generated
by the above algorithm for an instance I, and denote by OPT(I) the
optimal profit for this instance. Prove that for each k there exists an
instance such that kNaiveGreedy(I) < OPT (I).

Hint 2 : The corresponding instance consists only of 2 items!

Exercise Solution

Proof.

Assume for contradiction that the above algorithm has a constant ratio
of k for some k > 0.

Consider the following instance: B = 2k + 1, I = {i, i′}, p(i) = 2,
s(i) = 1, p(i′) = 2k + 1, s(i′) = 2k + 1.

Item i has an efficiency of e(i) = p(i)
s(i) = 2, while item i′ has an efficiency

of e(i′) = p(i′)
s(i′) = 1. Therefore, the algorithm will choose the item i,

while the optimal algorithm will choose item i′. It holds that
kNaiveGreedy(I) = k · 2 < 2k + 1 = OPT(I). Hence, the algorithm is
not a k-approximation.

Since we have shown for each constant k > 0, the algorithm NaiveGreedy
does not have a constant approximation ratio.

Improved Algorithm

Algorithm ImprovedGreedy:

I Sort the items by efficiency.

I Define a first solution S1 by greedily taking the most efficient item
until the next item does not fit inside the container.

I Define a second solution S2 that only contains the item with the
largest profit.

I Return the solution S1 or S2 that has the maximum profit among
these two.

Theorem

The above algorithm ImprovedGreedy has an approximation ratio of 2.

Proof

What to prove?
For each instance I it holds that 2A(I) ≥ OPT(I), where A(I) is the
profit of the solution generated by the algorithm and OPT(I) is the
optimal profit for that instance.

I Let I be any instance of the knapsack problem.
I Consider the following set of items I ′ that contains all the items

from the solution S1 and the next item i> that did not fit into the
bin.

I The set I ′ is no solution to the problem, since the items do not fit
inside the bin.

I It holds that p(I ′) ≥ OPT(I), where p(I ′) is the summed profit of
the items in I ′, since there is no space left inside the bin and we
took the most efficient items.

I Now consider the set of items S1 ∪ S2. It holds that
p(S1 ∪ S2) ≥ p(I ′) ≥ OPT(I), since p(S2) ≥ i> because it contains
the item with the largest profit.

I If p(S1 ∪ S2) ≥ OPT(I), one of the solutions has to be larger than
OPT(I)/2.

I As a consequence 2A(I) ≥ OPT(I).

Dynamic Program for Knapsack

Idea

I Construct a two dimensional table T.

I Entry T[p][i] contains the minimum size that is needed to gain
profit p with the first i items and is ∞=̂B + 1 if this profit cannot
be reached.

I Optimum profit can be found at the last entry in the row n that is
not ∞.

I Recursive formula:
T (p, i) = min{T (p, i− 1), T (p− p(i), i− 1) + s(i)}

Dynamic Program for Knapsack

Initialization

input: p[], s[], n, B

int pMax =0;

for i = 0 to n-1 {

pMax += p[i];

}

initialize T with size [pMax][n];

for i = 0 to n-1{

T[0][i] = 0;

}

for p = 1 to pMax{

T[p][0] = B+1;

if p = p[0] {

T[p][0] = s[0];

}

}

Dynamic Program for Knapsack

Filling the rest of the table

for p = 1 to pMax{

for i = 1 to n-1{

T[p][i] = T[p][i-1]

if p-p[i] >= 0 && T[p][i]>T[p-p[i]][i-1] + s[i]{

T[p][i]= T[p-p[i]][i-1] + s[i]

}

}

}

Finding the largest possible profit

p = pMax;

while T[p][n-1]>B{

p--;

}

(return p)

Dynamic Program for Knapsack

Finding the set of items

list items = new list ();

i = n-1

while p>0 && i>0 {

if T[p][i] == T[p][i-1]{

i = i-1;

}

else{

list.add(i);

p = p-p[i];

i = i-1;

}

}

if p>0 && i=0{

list.add(i);

}

return list;

Remarks to the dynamic program

Observation 1:
Instead of using the sum Psum :=

∑n
i=1 p(i) as the maximal reachable

value Pmax, we can find the solution to the 2-approximation P2 and
double it, i.e., Pmax := min{Psum, 2P2}.

Observation 2:
We can improve the running time a little by remembering the largest
profit Pi−1 of the previous row and stop the calculation at Pi−1 + p(i).
(This is useful when sorting the items by increasing profit)

Does this mean P = NP?

No!

Time complexity of above dynamic program:
O(n ·

∑n
i=1 p(i)).

(Binary) encoding length of {0, 1}-Knapsack:
log(B) +

∑n
i=1 log(p(i)) + log(s(i)).

Consequence:
The dynamic program might be exponential in the encoding length of the
problem, if there exist a profit that is larger than a polynomial in n, e.g.,
p(i) = 2n for some i ∈ {1, . . . , n}.

Observation:
The algorithm is polynomial in the input size if the problem is encoded in
unary. Unary encoding means that we need n symbols to encode the
number n, i.e., the unary encoding length of {0, 1}-Knapsack is given
by B +

∑n
i=1(p(i) + s(i)). The time complexity of algorithms which run

in polynomial time in unary encoding is called pseudo-polynomial.

An (1 + ε)-approximation for knapsack

Problem with the above dynamic program: The profit is to large.
Idea: Scale the profit down.

(1 + ε)-approximation for Knapsack (Due to Kim and Ibarra)

I For some given error parameter ε > 0 define k :=
⌊
n
ε

⌋
I For every item i ∈ {1, . . . , n}, define p̂(i) :=

⌊
pik
pmax

⌋
.

I Run the above dynamic program with the p̂ as the profits for the
items to get some optimal Ŝ.

I return Ŝ

Theorem

The above algorithm is an O(1 + ε)-approximation.

Proof of the theorem

I Let Ŝ be the solution computed by the algorithm and let OPT be an
optimal solution.

I Since we obtain an optimal solution to the problem with the scaled
profits we can deduce

∑
i∈Ŝ

p̂(i) ≥
∑

i∈OPT

p̂(i)

(pmax

k

)∑
i∈Ŝ

p̂(i) ≥
(pmax

k

) ∑
i∈OPT

p̂(i)

I For the algorithms solution it holds that

∑
i∈Ŝ

p(i) ≥

∑
i∈Ŝ

pik

pmax

 pmax

k
≥ pmax

k

∑
i∈Ŝ

p̂(i)

Proof of the theorem

I On the other hand, we know that

(pmax

k

) ∑
i∈OPT

p̂(i) =
(pmax

k

) ∑
i∈OPT

⌊
pik

pmax

⌋
≥
(pmax

k

) ∑
i∈OPT

(
pik

pmax
− 1

)
≥

∑
i∈OPT

p(i)−
∑

i∈OPT

pmax

k

≥
∑

i∈OPT

p(i)− n · pmax

k

≥
∑

i∈OPT

p(i)− εpmax

I Since pmax ≤ OPT it holds that∑
i∈Ŝ

p(i) ≥ (1− ε)OPT

Time Complexity of the algorithm

Theorem

The time complexity of the algorithm is O(n3/ε)

Proof.

The largest rounded profit is bn/εc and hence pMax is bounded by n2/ε.
As a consequence the table has a size of O(n3/ε).

PTAS and FPTAS

Definition (Approximation Scheme)

An algorithm is an approximation scheme for a problem if, given some
parameter ε > 0, it acts as a O(1 + ε)-approximation.

Definition (PTAS)

An approximation scheme is a polynomial time approximation scheme
(PTAS) if for each fixed ε > 0, the running time is bounded by a
polynomial in the size of the problem.

Remark:
This includes running times as O(n1/ε) or even O(n1/ε

1/ε

), since the
value 1/ε is considered a constant and not part of the problem.

Definition (FPTAS)

A fully polynomial time approximation scheme (FPTAS) is a PTAS with
a running time that is bounded by a polynomial in the size of the
problem and 1/ε.

More on FPTASes

Remark:
The above algorithm for the knapsack problem is an FTPAS. It is a
O(1 + ε)-approximation and it has a running time that is polynomial in
the size of the input and 1/ε.

Remark:
Only problems for which a pseudo-polynomial exact algorithm exist admit
an FPTAS. These problems are called weakly NP-hard.

Definition (strongly NP-hard)

A problem is strongly NP-hard if every problem in NP can be polynomial
reduced to it in such a way that numbers in the reduced instance are all
written in unary.

Theorem

A strongly NP-hard problem admits no FPTAS and no pseudo-polynomial
time exact algorithm for its optimization variant unless P = NP .

Minimum Makespan Scheduling (P ||Cmax)

Given:

I m identical machines

I A set J if jobs. Each job i ∈ J has a processing time p(j) and
needs one machine to be processed.

Objective:
Find a schedule (assignment from jobs to machines) such that the largest
total load on the machines is minimized. The total load of a machine mi

is the sum of all processing times assigned to this machine.

Hardness of P ||Cmax

3-Partition
Given: An integer B and a multiset I of 3n integers with values in the
open interval (B/4, B/2) with

∑
i∈I = n ·B.

Question: Is there a partition into n multisets (each containing exactly
three integers) such that the integers in each set sum up to B?

Theorem

3-Partition is strongly NP-complete

Exercise:
Prove that the decision variant of P ||Cmax is strongly NP-complete.

Solution of the Exercise

To show that the decision variant of P ||Cmax is strongly NP-complete,
we will prove that 3-Partition ≤P P ||Cmax.

Given an instance (B, I) of 3-Partition, we define the following
instance for P ||Cmax:

I define m := |I|/3
I define for each item i ∈ I one job ji with processing time p(ji) = i.

I Question: is there a schedule with makespan B?

Solution of the Exercise

We now have to prove that the instance of 3-Partition is a yes-instance
if and only if the generated instance for P ||Cmax is a yes-instance.

If the 3-Partition instance is a yes-instance, then there exists a
partition of the items into |I|/3 sets such that the numbers in each set
sum up to B. When we assign each of these sets to one machine the
schedule has a makespan of B. Furthermore, there exists no schedule
with makespan smaller than B. As a consequence, the P ||Cmax instance
is a yes-instance.

If the P ||Cmax instance is a yes-instance, then there exists a schedule
with makespan at most B. Since

∑
i∈I = n ·B each machine has a load

of at least B in this schedule. As a consequence, partitioning the
numbers I into the sets corresponding to the sets of jobs for the
machines delivers a partition as required by the 3-Partition problem
and hence it has to be a yes-instance as well.

	Introduction to Approximation Algorithms

