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Figure 1: Coupling multiple codes such as a rigid body simulation (a) and a fluid solver (b) enables to build complex worlds (c)-(d). Different
distribution and parallelization approaches can next be applied to achieve real-time user interactions (e)-(f).

ABSTRACT

We present a novel software framework for developing highly an-
imated virtual reality applications. Using a modular application
design, our goal is to alleviate software engineering issues while
yielding efficient execution on parallel machines. We target worlds
involving numerous animated objects managed by physical based
simulations. Mixing rigid objects, fluids, mass-spring or other de-
formable objects leads to complex interactions between them. To-
day no unified simulation algorithm with a reasonable complexity
is available to manage all these types of objects.

We propose a framework for coupling and distributing existing al-
gorithms. We reuse and extend the data-flow model where an appli-
cation is built from modules exchanging data through connections.
The model relies on two main classes of modules, animators and
interactors. Animators are responsible for updating objects’ states
from forces applied to them. These forces are computed in parallel
by interactors using the objects’ states they receive from animators.

The network interconnecting modules can be progressively opti-
mized. From a simple fully connected network enforcing a syn-
chronous semantics, it can evolve towards an active network able to
implement a bounding volume based dynamic routing or an asyn-
chronous data re-sampling.

As a result, we present an application managing interactions be-
tween rigid objects, mass-spring objects and a fluid. It is executed
in real-time on a 54 processors cluster driving 5 cameras and 16
projectors for user interactions.
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1 INTRODUCTION

Developing virtual worlds that include numerous animated objects
of different natures, like rigid, mass-spring, deformable or fluid
objects is a challenging problem. Applications range from life-
like special effects for movies, to extended possibilities of inter-
actions in immersive virtual reality environments. For instance,
virtual surgery requires to simulate a human body with rigid ob-
jects (bones), deformable objects (flesh) and fluids (blood). We can
distinguish three main difficulties:

• Algorithmic issues to produce convincing animations that cor-
rectly model interactions between objects of different natures.

• Software engineering issues where multiple pieces of codes
(simulations, graphics, device drivers, etc.), developed by dif-
ferent persons, during different periods of time, have to be
integrated in the same framework to properly work together.

• Hardware limitations, sometimes bypassed by using multiple
units together (CPUs, GPUs, cameras, video projectors, etc.),
but with the major drawback of introducing extra difficulties,
like task parallelization or multi devices calibration (cameras
or projectors).

Numerous approaches exist for animating objects, like keyframe,
kinematic, behavioral, procedural, or physical based animations.
We focus on physical based animations where object dynamics is
computed from the numerical simulation of physical laws. Several
algorithms have been proposed to simulate the behavior of one type
of object, fluids for instance [37, 15, 14], or a collection of similar
objects like rigid bodies [20]. Mixing objects of different natures,
like fluids and rigid bodies, proved to be more challenging [9]. Such
algorithms may require heavy computations that prevent real time
executions on a single PC or workstation. To improve performance,
some of them have been parallelized on PC clusters, such as inter-
active cloth simulation [24].

Software engineering issues have been addressed in different ways.
Scene graphs offer a specific answer to graphics application re-
quirements. They propose a hierarchical data structure where the
parameters of one node apply to all the nodes of the sub-tree. Such
hierarchy creates dependencies between nodes making efficient
scene graph distribution difficult on a parallel machine [25, 21, 32].
Several scientific visualization tools adopt a data-flow model [8].
An application corresponds to an oriented graph of tasks linked by
FIFO channels. This graph clearly structures data dependencies



between tasks. It eases task distribution on different processing
hosts [5]. To manage large distributed virtual worlds, networked
virtual environments usually target only kinematic simulations of
rigid objects [36]. Each participant locally simulates the world for
its zone of interest. The difficulty is then to ensure coherent in-
teractions without slowing down the simulation due to strong syn-
chronizations or a heavy network traffic. Approaches like dead-
reckoning enable to extrapolate object position to absorb part of the
network latency.

Hardware limitations have been tackled first by developing graph-
ics supercomputers integrating dedicated hardware [28, 31]. Focus
was on increasing the rendering capabilities through different par-
allelization schemes [27]. Today, such approaches are facing dif-
ficulties to keep pace, regarding price and performance, with com-
modity component based platforms like graphics PC clusters [34].
But aggregating commodity components requires an extra effort on
the software side. Chromium [23] proposes an optimized stream-
ing protocol, primarily aimed at transporting OpenGL primitives
on PC clusters to drive multi display environments. To improve la-
tency, virtual reality oriented libraries duplicate the application on
each rendering host. A synchronous broadcast of all input events
ensures that copies stay coherent [12, 6, 35]. Ray tracing has also
taken advantage of PC clusters to reach interactive frame rates [38].
New complex devices, like multi-camera systems [19, 26], further
increase the number of components to manage and the need for par-
allel processing.

In this paper we present a software framework for the development
of complex animated worlds enabling interactions between multiple
objects, potentially of different natures. We do not propose novel
simulation algorithms, but a framework to integrate existing codes.
The goal is to favor application modularity in an attempt to alleviate
software engineering issues while enabling efficient execution on
graphics clusters.

After presenting the related works in section 2, we detail our ap-
proach in section 3. In section 5, we present our implementation, in-
volving multiple interactions between rigid bodies, Eulerian fluids
and mass-spring systems, and we detail performance results from
executions on a cluster of up to 54 processors.

2 RELATED WORK

Our approach builds upon prior works on physical based simula-
tions, distributed and parallel simulations. This section gives a short
overview of the background most relevant to our problem.

2.1 Physical Based Simulations

Simulations for computer graphics are a well studied problem, for
both off-line animations and real-time interactions. The goal is to
produce convincing visual effects while keeping the computational
cost as low as possible, often leading to loosen the physical ac-
curacy. Several algorithms exist to simulate the behavior of one
type of object, fluids for instance, or a collection of similar objects
like rigid bodies. Recent works have focused on simulations for
rigid bodies [20], fluids [37, 15, 14], clothes [7], and deformable
objects [13].

Implementing interactions between different types of objects, flu-
ids and rigid bodies for instance, is a difficult issue. In certain cases
this difficulty can be bypassed considering only one-way interac-
tions, i.e. one object has an influence on another but not the re-
verse. A common case is when one of the object is externally

controlled, either following a predetermined animation, or thru user
inputs. One-way interactions also lead to sound simulations if a dif-
ference of several orders of magnitude on some parameters, weight
for instance, enables to safely neglect the influence of one object
onto another. Other simple approximations are sometimes used.
For example, fluid to rigid body interactions can be handled using
the velocity of the fluid at the center of mass of the immersed body.
This can be used to compute the motion of small particles in a fluid,
like leaves on the surface of a river. The most common one-way in-
teractions are probably with immovable rigid objects. Fluid solvers
generally use specific boundary conditions [14] but can sometimes
handle more complex occlusions objects [22]. Cloth simulations
detect and handle collisions with external objects [7].

The approximation incurred by one-way coupling may not lead to
convincing visual effects. The conservation of energy requires that
any energy lost by an object should be transmitted to other objects.
A few recent algorithms propose to handle two-way interactions
between fluids and deformable objects [17], or between fluids and
rigid objects [9]. One issue is the difference in representation of
each object. A rigid body uses a Lagrangian representation (the
simulation computes properties of mobile elements), while most
fluid simulations use an Eulerian fixed grid structure. One way
to compute their interaction is by using the same model for both
objects. This is the approach used in recent works, either using a
Lagrangian fluid simulation [29], or adding a rigid constraint in an
Eulerian fluid [9].

2.2 Distributed and Parallel Simulations

Networked virtual environments [36], like battlefield simulations
and networked games, or distributed scene graphs [25, 21] are fac-
ing the same issue regarding data coherency. Data have to be dupli-
cated on different machines and as soon as a value has been modi-
fied its copies should be updated. Strong coherency protocols gen-
erate a heavy network traffic and require a tight host synchroniza-
tion. This is especially critical for multi-site collaborative applica-
tions where the network is an important performance bottleneck.
One approach consists in loosening the consistency between copies
taking advantage that the user interacts only with a sub part of the
whole scene. For instance, a group of objects may be considered as
a single object if located far away from the user, thus requiring only
updates of the group position. Position can also be updated less fre-
quently as the user will not notice small changes. Interpolations and
data clustering techniques can be used to have hosts running at dif-
ferent frequencies, thus avoiding the overall simulation frequency
to be bounded to its slowest host. Dead reckoning techniques have
been intensively studied. They enable to extrapolate object position
to absorb part of the network latency.

Scientific simulations have traditionally used parallelism to get ac-
cess to high performance machines. Task parallelism is today the
most common approach where computations are split into sev-
eral communicating tasks. Programming relies on specific libraries
like MPI [18] or OpenMP [10]. In contrast to computer graphics,
the main goal is physical accuracy, usually leading to tightly cou-
pled monolithic codes with large execution times [30]. Few works
propose to reuse such approaches to parallelize computer graph-
ics simulations to treat larger problem sizes or to reduce execution
times [24]. Parallelism has been more commonly used for scientific
visualization, but mainly to post-process large data sets obtained
from classical parallel simulations [39, 1].



Figure 2: System architecture of our framework.

3 THE APPLICATION MODEL

This section presents the model our approach is based on.

3.1 Overview

We introduce the main components of our framework, FlowVR In-
teract (Fig. 2). It is based on FlowVR [2], an open-source middle-
ware for large-scale interactive applications. It is organized around
an extended data-flow model. Computations take place in mod-
ules. Messages flow between modules through a network built by
assembling FIFO connections and filters. Filters have the ability
to perform complex treatments on messages to optimize the data
flow. For rendering, a high-level extension FlowVR Render [4] al-
lows FlowVR modules called viewers to describe the 3D scene in a
distributed and efficient way.

The model relies on two main classes of modules, animators and
interactors. Animators own objects. They are responsible for up-
dating their object states from the forces that apply to these objects.
Objects are self-defined to ensure that adding or removing an ob-
ject does not affect other objects. The forces applied to objects
are computed by interactors, based on the object states they receive
from animators. Each interactor is usually dedicated to one algo-
rithm, for handling collisions between rigid objects for instance. It
enables a modular coupling of existing algorithms to build worlds
combining the capabilities of each of these algorithms.

3.2 Message Format

To allow for efficient distributed execution, the world is decom-
posed into independent entities identified by unique ids. These ids
are obtained from the IP address of the host creating the object and
an atomic counter stored in the host shared memory.

The world is composed of a set of objects. Objects are described
by a set of parameters specific to the type of the object. Some
large datasets, such as 3D meshes or vector fields, can be used by
several objects. To avoid duplication in memory and within com-
munications, this information is stored in entities called resources.
A resource has a unique id. The objects referring to this resource
only have to specify its id as a parameter.

To allow for efficient communications, only changes or events are
exchanged. Each such change or event is described in a chunk. All
data contained in a chunk are related to the same object or resource
identified by its id. Messages flowing between modules are the

concatenation of these chunks of data. A resource can either be
static, in which case it will only be transmitted once, or dynamic,
such as the mesh of deformable objects.

3.3 Modules, Connections and Filters

Our model is heavily based on FlowVR [2]. While we present the
main concepts in this sections, please refer to [2] for more details.

A module is a computation task that can have several input and out-
put ports. At each iteration a module waits to receive one message
on each input port and it sends one message on each output port.

An application is built by selecting modules and choosing the topol-
ogy of the interconnection network that defines data dependencies
between modules. This network uses two components:

• Point-to-point connections corresponding to simple FIFO
channels.

• Filters dedicated to message processing. In opposite to mod-
ules, a filter has access to all messages stored in the incoming
buffers and can perform any operation on these messages.

By default, each module has one filter per port. On each input port,
a filter, called input filter, gathers the last available message from
each incoming connection into one message forwarded to the in-
put port. On output ports, a filter, called output filter, forwards
the last message received from the module to each output connec-
tion. These filters help separate network specific computations from
modules.

Filters are also used for more complex message management. For
instance, message broadcast can be performed through a tree of fil-
ters. The cost of broadcasting a message is thus logarithmic re-
garding the number of receivers if the filters can work concurrently.
This cost can be further reduced using dynamic routing to remove
unnecessary communications (based on bounding volumes for in-
stance).

3.4 Animation Modules

A world is decomposed into objects distributed to animation mod-
ules, called animators. Each object has a unique id and owns a list
of parameters. These parameters contain all data about the object
that an application may need. It can include graphics data, audio
data, physical data, etc. Each object has also a type. All objects
of the same type define the same list of parameters. For instance, a
rigid object animated by a physical based simulation would define a
position, a bounding box, a velocity, an angular velocity, a mass, an
inertia tensor, and optionally a polygonal mesh, a signed distance
field, and for rendering, shaders, textures, and a (potentially more
detailled) polygonal mesh.

The parameters of an object can only be updated by the animator
that owns it. All objects are independent at an animator level, that
is, updating a parameter of an object does not depend on the param-
eters of other objects. In particular, the position parameters of all
objects are expressed in the same world coordinate system. This en-
sures that updating objects can be performed in any order, and that
objects can be arbitrarily distributed to different animators. This is a
fundamental property to achieve high performances in a distributed
context. It also eases working only on a subset of objects.

An animator has one output port and one input port. The output
port, called the object output port, enables an animator to send
messages to notify other modules that it added, deleted an object



or updated an object parameter. At each interaction, a chunk, called
object chunk, is built for each object that has changed. The mes-
sage sent on the output port is the concatenation of these chunks.
The input port, called the event input port, receives external inter-
action events. While the framework support several types of events,
we mainly consider here forces to be applied at a specific position
for a specified time duration. At each iteration, an animator updates
its objects according to the forces received.

Most animators are programmed to treat a specific type of objects,
thus requiring one animator for each type of objects in a scene. The
objects can be further distributed by instancing several animators
for the same type, partitioning the objects either statically or dy-
namically (based on space partitioning for instance).

3.5 Interaction Modules

Interaction modules, called interactor, handle interactions between
objects. They have one input port and one output port. The input
port, called the object input port, receives object chunks. These are
the chunks computed by animators. They enable interactors to lo-
cally store the resources and objects they are concerned with. The
output port, called force output port, sends the event chunks com-
puted by the interactor. Different animators may be implemented to
handle different interactions. For instance an animator could imple-
ment collision detection between rigid objects, while another may
be dedicated to mass-spring simulations. An interactor can use the
object type to select the relevant objects. Similarly to animators,
the work load can be further distributed by instancing several ani-
mators, each dedicated to one region for instance.

3.6 Viewer Modules

Viewer modules, also called viewers, are in charge of transforming
input data into graphical representations. Viewers usually either
have one object input port to get object and resource data, or the
animator module doubles as a viewer directly specifying the graph-
ical representation. Viewers rely on FlowVR Render, a distributed
rendering framework based on shaders we developed [4]. It enables
high performance rendering on multi-projector environments.

Following the same scheme, other rendering modules could be de-
veloped, for audio rendering for instance, providing that objects
define the required parameters.

3.7 User Inputs

User inputs can be managed in different ways, depending on their
semantics. Each input device is implemented as a module. We can
distinguish three cases:

• One-way user to object physical interactions:

– The input is considered as an object, for instance a
sphere centered on the tip of a pointer device. The input
module is thus an animator without event input port.

– The input is interpreted as a force. The input module is
thus an interactor.

• Two-way physical interactions. This is typically the case for
haptic devices. The input is an object that influences other
objects and is submitted to other object forces. The module,
an animator, considers incoming forces to compute the force
feedback to apply to the user.

Figure 3: Animation sequence showing a mass-spring object with
rigid collision then fluid interactions.

• Non physical interactions. For instance, the input device can
be used to select an object, get and change the value of some
internal parameters. Various alternatives are possible to im-
plement such interactions. This usually requires the module
that may respond to these interactions to support event types
other than forces.

4 MODULE ASSEMBLY, DATA EXCHANGE AND FILTERING

We present in this section how to design an application following
the model presented before.

4.1 Running Example

For sake of clarity, we rely on an example. This example is a sim-
plified version of the application we implemented for our prototype.
The goal is to have an animated world with rigid, fluid and mass-
spring objects. Animations should respect the constraints related to
the collisions that may occur between any of the objects present in
the world.

We reuse known algorithms for the simulations. We rely on the
algorithm of [9] to simulate the fluid and the objects that may fall
into that fluid (solid and mass-spring objects). Two modifications
are necessary:

• The algorithm computes the forces to apply to the objects
present into the fluid, instead of directly updating the velocity
of these objects (this is the role of the object animator).

• To support interactions between the fluid and mass-spring ob-
jects, we simply consider a mass-spring object as a set of in-
dependent masses. This is a simplification that for instance
does not enable to control the object permeability to the fluid.

The rigid object simulation is based on [20]. The mass-spring sim-
ulation relies on a straightforward algorithm: explicit Euler inte-
gration of forces and velocity, and constant stiffness springs with
maximum stretch constraint.

All objects define a position matrix, a bounding box and graphics
data (mesh, textures, shaders, etc.). Each object has additional pa-
rameters depending on its type:

• Rigid objects define parameters for their velocity, angular ve-
locity, mass, inertia tensor, polygon mesh and signed distance
field.

• Eulerian fluid objects define parameters for the velocity, pres-
sure and density field.

• Mass-Spring objects define parameters for the nodes (mass
and position) and the springs (connection nodes, stiffness and
damping).
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Figure 4: A rigid body simulation (a) and a mass-spring simula-
tion (b). Ports are represented by squares, filters by rhombus. Ob-
jects description ports, filters and connections are bolded.

4.2 Synchronous Application

We first start with one animator and one interactor for rigid objects
(Fig. 4). A first network can be designed connecting the force ports
and object ports. At each interaction, the animator updates the ob-
ject states according to the collision response forces computed by
the interactor.

Mass-spring objects are managed differently with an animator con-
trolling masses position, an interactor computing forces applied by
springs, an other interactor to compute forces related to collisions
between mass-spring objects (Fig. 4). A third interactor is used for
collisions between rigid objects and mass-spring objects (Fig. 5).
The network can then be extended to connect all event ports and
all object ports of all modules. Modules use the object types to
discard the message chunks they are not concerned with. Anima-
tors use object ids to identify and combine forces that relate to the
same object. Only one interactor managing all mass-spring related
interactions could be implemented. But the modularity of the appli-
cation is enhanced with 3 interactors. It enables to distribute them
on different machines if extra computing power is required. It also
eases testing new algorithms on one module of the simulation.

The fluid is implemented by a single module having the ports of an
animator and an interactor module. This animator/interactor man-
ages the fluids dynamics taking into account the objects that can
be present into the fluid. The output forces are the forces resulting
from the fluid pressure on the other objects. The algorithm [9] is
based on a 3D grid discretizing the space area where fluid can be
present. Separating the animator from the interactor would not be
appropriate, as this algorithm uses large internal data (velocity and
pressure fields, marker particles), and forces for the fluid itself as
well as the immersed objects are computed simultaneously. As we
will details in section 4.3.2, we propose to parallelize the module
following a different approach that enables to achieve more signifi-
cant speed-ups.

The network designed includes cycles, for instance between the an-
imator and the interactor of the rigid objects. These cycles cause
deadlocks that prevent the application to start. We rely on input
filters to generate at start-up a default message that enables their
modules to start. If only the animators’ input filters create this ini-
tial message, then the animators and interactors will execute suc-
cessively, similarly to the classical sequential simulation loop. To

Figure 5: An Application involving two-way interactions between rigid
objects, a mass-spring object and a fluid object. A first optimization
of the data-flow network has lead to remove useless connections, from
the spring interactor to the solid animator for instance (spring forces
only have to be sent to the mass-spring animator).

allow all modules to run in parallel, all inputs filters must create
one or more initial message. This will increase performances but
at the expense of the latency of the interactions, as the animators
are now receiving forces computed using objects’ states several it-
erations old. This is mostly an issue for rigid interactions, such as
collisions, and less noticeable for smooth interactions, related to the
fluid of the springs for instance. In this case, we can set the input
filter of the rigid interactor not to send an initial message, forcing
the rigid animator and interactor to run sequentially.

By default, modules are fully interconnected. A simple optimiza-
tion consists in removing useless connections (Fig. 5). Without fur-
ther effort, off-line animations are computed executing all modules
on the same machine. Figure 3 shows an excerpt of the resulting
animation.

4.3 Distributed Application

Several optimizations can be implemented to improve perfor-
mances. A simple first step is to distribute the modules on the
hosts of a cluster to benefit from extra computing power. The syn-
chronous semantics of the network ensures data dependencies are
respected.

4.3.1 Module Duplication

Another optimization consists in reducing the work load of a mod-
ule by running several copies in parallel on different hosts. This
approach does not require to modify the module code if its work-
load can be divided into independent batches. For instance such
approach can be applied to run several copies of the rigid interac-
tor, each managing a different volume in space.

4.3.2 Parallel Module

Duplication may not be possible for all modules. For these mod-
ules a classical parallelization can be considered. The fluid module



implements a simulation based on a 3D grid. A classical paralleliza-
tion scheme for such data structure is to partition the 3D grid into
blocks, distribute the blocks to different processors and exchange
the border values between neighbors at each step. This paralleliza-
tion is efficient for large datasets as the communication cost is pro-
portional to the block surface, while the computation cost is related
to the block volume. Such parallelization is easily implemented
with MPI [18] for instance. In this case, we implement one mod-
ule per block. The network must be modified to ensure input data
are properly distributed to the modules and output data are properly
gathered. Filters are used to perform these operations.

4.3.3 Dynamic Routing

On clusters the network is often the bottleneck. Care must be taken
to avoid sending useless data. Static optimizations are possible
(Fig. 5), but filters can also be programmed to dynamically route
messages. Assume we use several interactors to compute collisions.
The list of objects that are relevant to each interactor depends on the
space partition it is managing. An additional output port is declared
on each viewer to send their volume of interest to the output fil-
ters of the animators. The filters are modified to forward to each
viewer only the chunks of the objects whose bounding volume in-
tersects with the volume of interest. These filters must also save
the state of all objects to forward interactors up-to-date parameters
when needed.

4.3.4 Multi-rate Application

The application and all its variations afore-mentioned are syn-
chronous, i.e. all modules run at the same rate, the rate of the
slowest module. Performance can be significantly improved having
modules running at different rates. Filters can be used to implement
multiple fixed rates.

Let us consider the mass-spring simulation (Fig. 4(b)). It is based
on a very simple algorithm that is unstable if the time step is too
large. However the time step is defined by the slowest module in
the scene, the fluid in our case. To have the mass-spring simulation
running 10 times faster than the other modules, the input filters are
modified. For each event chunk received, the filter forwards 10 con-
secutive messages with the same data but a time duration divided
by 10. The mass-spring animator thus executes 10 iterations while
other animators iterate only once. Every 10 messages created by
the mass-spring animator, the output filter forwards only the most
recent one to the other interactors in the application. This scheme
allows to use different time steps within the application, transpar-
ently from the point of view of the animators and interactors.

5 IMPLEMENTATION AND RESULTS

This section introduces our prototype implementation and discusses
performance results based on an application involving rigid, mass-
spring and fluid objects.

5.1 FlowVR

Our implementation relies on FlowVR[2]. The list of modules se-
lected for an application and the network (connections and filters)
are described with Perl scripts. Predefined functions implement
common patterns. They can be extended with new functions. In

our case for instance, we developed a new function to automati-
cally associate with each module its input and output filter. This
approach enables to describe an application in a compact way even
if the resulting network is very complex. This script also enables to
map each module or filter onto a given host when the application is
executed on a cluster.

FlowVR relies on a daemon executed on each host of the cluster.
The daemon manages a shared memory segment. All messages
created by a filter or module are allocated in this segment. When
modules or filters located on the same host exchange a message,
it results in a simple pointer exchange, thus saving costly message
copies. Inter-hosts message exchanges are transparently handled by
daemons that perform the required data transfers.

5.2 Results

The application implemented is the one described in section 4.

5.2.1 Single Machine Execution

We first consider an execution on a single machine without user
interactions. A FIFO network ensures that all modules run at the
same rate. The application was tested with the following objects:

• Rigid body simulation, with 20 objects

• Parallel fluid simulation on a 32×64×32 grid.

• A mass-spring 2D net, with 20×20 nodes.

The application was executed on a 1.6 GHz dual Opteron PC
equipped with NVIDIA FX 5700 graphics cards. The application
reached 6.5 frames per second (fps), which is not sufficient for vir-
tual reality. The attached video enables to evaluate the visual qual-
ity of the animations.

5.2.2 Interactive Execution

We next targeted real-time executions including advanced user in-
teractions in a semi-immersive environment.

The application was executed on the GrImage platform that con-
sists in a cluster of sixteen 1.6 GHz dual Opteron PCs equipped
with NVIDIA FX 5700 graphics cards and connected together by a
gigabit Ethernet network.

The rigid-fluid simulation being the slowest module, it is paral-
lelized with MPI [18] following the approach presented in sec-
tion 4.3.2. Messages from and to the modules of this parallelization
transit through filters organized into a binary-tree. This parallel
simulation was executed on 8 hosts. The remaining modules were
distributed one per host.

The application was modified to support multiple rendering hosts,
driving a display wall of sixteen projectors. The display was syn-
chronized using a software swaplock to ensure a proper image syn-
chronization (implemented with FlowVR Render). The data from
the mass-spring and rigid animators was simply broadcasted to all
rendering hosts. The fluid however generates a large set of parti-
cles (up to 200000 particles) that are used for rendering. To avoid
collapsing the network, the output filter of each module of the par-
allelized fluid was set to dynamically route the grid cell content
according to each projector’s frustum.

For user interactions we additionally used 5 FireWire cameras con-
nected to 11 dual-Xeon 2.6 GHz PCs computing a user’s 3D model



Figure 6: Interactive execution with camera-based user interactions
and high resolution rendering on a display wall.

in real-time. We added a new animator dedicated to the user’s
model. This model is considered as a rigid object. It defines all
required parameters. Note however that 3D mesh and the signed
distance field are computed dynamically:

• The 3D mesh is obtained from the computation of an exact
visual hull [16].

• The signed distance field is computed by applying an Eu-
clidean distance transformation [33] from a voxel model of
the user [11].

These parameters provide only position data and no velocity, which
limits the possibilities of interactions with other objects. Regard-
ing interactions, this object was managed as a classical object ex-
cept that no force affects it (it can be considered as an infinite mass
body).

The animator has its output object port connected to the input ob-
ject port of the rigid, rigid-fluid and rigid/mass-spring interactors.
It receives on an extra input port the 3D mesh computed in par-
allel based on the algorithm of [16]. An other module computes
the voxel model and the signed distance field [3]. Pictures of the
rendering on the display wall is shown in Fig. 6.

The application reached 18 fps, about three times faster than on a
single machine, but with 16 times more pixels to compute and a
dynamics 3D mesh to handle. Notice that the network is an im-
portant bottleneck. When all fluid particles are forwarded to all 16
rendering hosts, the frame rate is below 1fps. The dynamic routing
we use enables to significantly reduce this bottleneck to reach 18
fps. In the future, the fluid modules will be modified to extract and
forward only the fluid surface instead of particles.

6 CONCLUSION

We presented a software framework for coupling physical based
simulations for large VR applications. Our approach relies on ob-
jects distributed amongst animators in charge of updating the ob-
jects’ state, and interactors computing the forces that apply to ob-
jects. This approach enables both a modular application develop-
ment as well as an efficient distributed execution. Objects being
self-defined, it enables to distribute them amongst different anima-
tors. The different forces that apply to an object can be computed
independently. It allows to have several interactors working in par-
allel.

We presented an application coupling a rigid-fluid simulation, a
rigid bodies simulation and a mass-spring simulation. It reached
interactive frame rates by distributing the modules on a cluster and
using a classical grid-based parallelization of the rigid-fluid sim-
ulation. Complex devices, a multi camera system and a display
wall, were attached to the application to allow user interactions. It
demonstrated the effectiveness of modularity and the interest in us-
ing a cluster to enable highly animated VR applications.

Our approach takes advantage of the underlying dataflow model
where connections can be combined with filters to enable complex
message processing. It clearly separates module programming from
network programming. The user can concentrate on implementing
algorithms into modules first and design a simple initial network
for testing purpose. Next, he can focus on performances by dis-
tributing modules on a cluster. The dataflow network can then be
gradually improved to implement different optimizations, like dy-
namics routing or multi-rate execution. Heavily loaded modules
may be duplicated or parallelized to further improve the frame rate
and the latency.

Tightly coupled simulation algorithms do not adapt well to the an-
imator/interactor model. They rely on strong data dependencies
that require specific parallelizations to achieve high performance
executions. The modular design we propose enables to use such
scheme when required and switch to more efficient algorithms pro-
gressively as efficient implementations become available.

Future works will address long range interactions between objects,
like light interactions. The goal will be to distribute the shadow
computations into several specialized modules. Experiments will
also be conducted to develop large scale applications taking advan-
tage of 100 to 200 processors.
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