
FlowVR: A Framework For Distributed Virtual Reality Applications

Thomas Arcila∗ Jérémie Allard† Clément Ménier‡ Edmond Boyer§ Bruno Raffin¶

Laboratoire ID & Laboratoire GRAVIR
Grenoble

CNRS/INPG/INRIA/UJF

ABSTRACT

This paper introduces the FlowVR suite, a set of softwares targeted
at virtual reality applications distributed on clusters or grid envi-
ronments. The FlowVR middleware supports coupling of heteroge-
neous parallel codes and is component oriented to favor code reuse.
After introducing the FlowVR main concepts, we details the differ-
ent tools associated and several applications.

Keywords: Virtual reality, PC Cluster, Parallel Computing

1 INTRODUCTION

Developing VR applications that include numerous simulations, an-
imations and advanced user interactions is a challenging problem.
We can distinguish two strong difficulties:

• Software engineering issues where multiple pieces of codes
(simulation codes, graphics codes, device drivers, etc.), de-
veloped by different persons, during different periods of time,
have to be integrated in the same framework to properly work
together.

• Hardware limitations bypassed by multiplying the units avail-
able (CPUs, GPUs, cameras, video projectors, etc.), but with
the major drawback of introducing extra difficulties, like task
parallelization or multi devices calibration (cameras or pro-
jectors).

Software engineering issues have been addressed in different
ways. Scene graphs offer a specific answer to graphics applica-
tion requirements. They propose a hierarchical data structure where
the parameters of one node apply to all the nodes of the sub-tree.
Such hierarchy creates dependencies between nodes that constrain
the graph traversal order. These dependencies make efficient scene
graph distribution difficult on a parallel machine [13, 18]. Several
scientific visualization tools adopt a data-flow model [7]. An ap-
plication corresponds to an oriented graph with tasks at vertices
and FIFO channels at edges. This graph clearly structures data de-
pendencies between tasks. It eases task distribution on different
processing hosts [5]. To manage large distributed virtual worlds,
networked virtual environments usually target only kinematic sim-
ulations of rigid objects [21]. Each participant locally simulates the
world for its zone of interest. The difficulty is then to ensure coher-
ent interactions without slowing down the simulation due to strong
synchronizations or a heavy network traffic.

Hardware limitations have been tackled first by developing
graphics supercomputers integrating dedicated hardware [16]. Fo-
cus was on increasing the capabilities through different paralleliza-

∗e-mail: thomas.arcila@imag.fr
†e-mail: jeremie.allard@imag.fr
‡e-mail: clement.menier@inrialpes.fr
§e-mail: edmond.boyer@inrialpes.fr
¶e-mail:bruno.raffin@imag.fr

(a) (b) (c) (d)

(e) (f)

Figure 1: Several applications developed with FlowVR such as a ter-
rain rendering (a), a multi-camera 3D reconstruction (b), an object
carving potter wheel (c) and a rigid body simulator (d), can be com-
bined in a single large VR Application running on a cluster (e-f).

tion schemes [15]. Today, such approaches are facing difficulties
to keep pace, regarding price and performance, with commodity
component based platforms like graphics PC clusters [19]. But ag-
gregating commodity components requires an extra effort on the
software side. Chromium [11] proposes a highly optimized stream-
ing protocol, primarily aimed at transporting OpenGL primitives
on PC clusters to drive multi display environments. To improve la-
tency, virtual reality oriented libraries duplicate the application on
each rendering host. A synchronous broadcast of all input events
ensures copies stay coherent [8, 6, 20]. VR applications can also
take advantage of a cluster to distribute input devices or simulation
tasks. For instance new complex devices, like multi-camera sys-
tems [10, 14], increase the number of components to manage and
the need for parallel processing. Distributed code coupling have
been experimented for VR applications with tools like Covise [5],
OpenMask [1] or Avango [22].

All the mentioned algorithms and tools are useful in different
application scenarios. Large scale applications often requires a
number of these technics but it is difficult to choose the most ef-
ficient ones and combine them in a single application. In this paper
we present a software framework for the development of large dis-
tributed VR applications. The goal is to favor the application mod-
ularity in an attempt to alleviate software engineering issues while
taking advantage of this modularity to enable efficient executions
on PC clusters. We developed the FlowVR suite [2, 4], a software
suite dedicated to distributed interactive applications.

It is composed of FlowVR (section 2), a middleware that reuses
and extends the classical data-flow model, FlowVR Render (sec-
tion 3), a shader based framework for distributed rendering and



VTK FlowVR (section 4) that enables rendering VTK applications
with FlowVR Render.

FlowVR comes with a complete set of tools to develop dis-
tributed applications, to map an application on a cluster, to launch it
and control its execution. FlowVR also comes with tools for graph
visualization, trace capture and visualization to analyze an execu-
tion.

2 THE FLOWVR MIDDLEWARE

2.1 Overview

FlowVR is an open source middleware, currently ported on Linux
and Mac OS X for the IA32, IA64, Opteron, and Power-PC plat-
forms. In this section we present its main features. Refer to [2] for
more details.

An application is composed of modules exchanging data through
a FlowVR network. A module is usually an existing code that has
been updated to call FlowVR functions. A module runs in its own
independent process or thread, thus reducing the effort required to
turn an existing code into a module.

From the FlowVR point of view, modules are not aware of the
existence of other modules. A module only exchanges data with
the FlowVR daemon that runs on the same host. The set of dae-
mons running on a PC cluster are in charge of implementing the
FlowVR network that connects modules. The daemons take care
of moving data between modules using the most efficient method.
This approach enables to develop a pool of modules that can next
be combined in different applications, without having to recompile
the modules.

The FlowVR network defined between modules can implement
simple module-to-module connections as well as complex message
handling operations. For instance the network can implement syn-
chronizations, data filtering operations, data sampling, dead reck-
oning, frustum culling, collective communications schemes like
broadcasts, etc. This fine control over data handling enables to take
advantage of both the specificity of the application and the under-
lying cluster architecture to optimize the latency and refresh rates.

To execute an application on a cluster the user maps the mod-
ules on the different hosts available. The FlowVR network is im-
plemented by a daemon running on each host. A module sends a
message on the FlowVR network by allocating a buffer in a shared
memory segment managed by the local daemon. If the message has
to be forwarded to a module running on the same host, the daemon
only forwards a pointer on the message to the destination module
that can directly read the message. If the message has to be for-
warded to a module running on a distant host, the daemon sends it to
the daemon of the distant host. The target daemon retrieves the mes-
sage, stores it in its shared memory segment and provides a pointer
on the message to the receiving module. Using a shared memory
enables to reduce data copies for an improved performance.

Daemons can load custom classes (plugins) to extend their func-
tionalities. For instance, the current version loads a TCP plugin to
implement inter-host communications. Custom plugins can be de-
veloped to support other protocols for high performance networks
like Infiniband or Myrinet.

2.2 Messages

Each message sent on the FlowVR network is associated with a list
of stamps. Stamps are lightweight data that identify the message.
Some stamps are automatically set by FlowVR. The user can also
define new stamps if required. A stamp can be a simple ordering
number, the id of the source that generated the message or a more
advanced data like a 3D bounding volume. To some extent, stamps
enable to perform computations on messages without having to read
the message contents. A stamp can be routed separately from its
message if the destination does not need it. It enables to improve
performance by avoiding useless data transfers on the network.

Figure 2: The FlowVR application development chain. From modules
(left) to the commands the controller forwards to daemons (right).

2.3 Modules

Computation tasks are encapsulated into modules. Each module
defines a list of input ports and output ports. During its execution
a module endlessly iterates reading input data from its input ports
and writing new results on its output ports. For that purpose it uses
the following three main methods:

• The wait defines the transition to a new iteration. It is a block-
ing call that ensures each connected input port holds a new
message. Notice that this semantics requires that at each
iteration a module receives a new message on each of its con-
nected input ports. This constraint can be loosen by using
specific FlowVR network components, as we will see in the
following (section 2.5).

• The get function enables a module to retrieve the message
available on a port.

• The put function enables a module to write a message on an
output port. Only one new message can be written per port
and iteration. This is a non-blocking call, thus allowing to
execute computations and communications in parallel.

Each module has two predefined ports called beginIt and endIt.
The input activation port beginIt is used to lock the module to an
external event. The output activation port endIt is used to signal
other components that the module has started a new iteration.

A module does not explicitly address any other FlowVR compo-
nent. Its only exchange channel with the outside FlowVR world is
through its ports. This ensures modules can be reused in different
applications without code modification or recompilation.

Usually a module is build using an existing piece of code that is
modified to include the required FlowVR function calls. It runs in
its own process or thread as it would before becoming a module. A
module can be programmed in any language as long as the FlowVR
library provides the required language binding. The current imple-
mentation only provides a C++ binding. Other languages will be
supported in the future.

Each implemented module is associated with an XML file that
describes the module properties (Fig. 2). This file contains the path
to the executable, the list of ports of the module and the command
to launch it on a distant host. Templates and scripts can be used to
ensure the genericity of this description. When designing an appli-
cation, A second XML file is used to list the instances of modules
involved in the application. For each module this list sets the mod-
ule name, the host where it should be launched and the values of
its different parameters. The flowvr-module (Fig. 2) utility parses
these files to build:



• the list of commands required to launch the modules,

• the list of all modules present in the application with their
name, their list of ports and the host name they will run on.
This list is the base for designing the FlowVR network.

Notice that FlowVR can handle commands that launch several
modules at once. This is useful to include a parallel code into a
FlowVR application by having each process acting as a module.

2.4 The FlowVR Network

The FlowVR network specifies how the ports of the modules are
connected. The simplest primitive used to build a FlowVR network
is a connection. A connection is a FIFO channel with one source
and one destination.

To perform high performance and complex message handling
tasks we introduce a new network component called filter. Like
a module, a filter is a computation task that has typed ports. But
filters are deeply different from modules in two different ways:

• A filter is not constrained to receive one and only one message
per input port and per iteration. A filter has access to the full
list of incoming messages. It has the freedom to select, com-
bine or discard the ones it wants. It can also create new mes-
sages. For instance, a filter can discard incoming messages
which 3D bounding box falls outside of a given volume.

• A filter does not run in its own process. It is a plugin loaded
by FlowVR daemons. The goal is to favor the performance by
limiting the required number of context switches.

As such, a filter is more difficult to program than a module re-
garding message handling. Usually, a user only selects the filters
it needs amongst the ones that come with FlowVR.

Amongst filters, we call routing nodes the filters that simply for-
ward all incoming messages on one or several outputs. They are
useful to set custom routing graphs.

We also distinguish another special class of filters, called syn-
chronizers. A synchronizer implements coupling policies by cen-
tralizing data from other filters or modules to take a decision that
will then be executed by other filters. A synchronizer differs from
standard filters because all input and output connections only carry
the message stamps alone.

To design a FlowVR network, the user writes a Perl script
(Fig. 2). Using a procedural language enables a high level and
compact network description. Numerous patterns that proved use-
ful have been encapsulated into functions. If required, a user can
complement the set of existing functions. This script takes as in-
put the list of modules of the application and generates the list of
FlowVR commands required to construct the network (two steps
process involving the flowvr-network tool - Fig. 2).

Each FlowVR application is managed by one special module
called a controller. The controller first starts the application’s mod-
ules using the launching command computed by flowvr-module.
Once modules are launched, they register themselves to their local
daemon which sends an acknowledgment to the controller. Then,
the controller forwards the FlowVR network commands generated
by the Perl script to the daemons that execute these commands to
configure themselves (load plugins, set parameters, etc.). The exe-
cution of the application can then start.

2.5 Simple Example

Let us consider a simple example based on two modules called com-
pute and display. Each one has a single port called in and out re-
spectively. A first very simple application consists in running each
module on a different host (host1 and host2) and having a FIFO
connection that enables compute to send each message it produces
to display (Fig. 3(a)). The Perl script required to design this net-
work is very simple:

�

�



�?

�

�



�

beginIt

endIt

display
in

out

beginIt

endIt

compute
(host1)

(host2)

(a) FIFO network.

�

�



�

out

beginIt

endIt

compute
(host1)

�

�



�
in beginIt

display
(host2)

endIt

?

������HHHHHH������
HHHHHH

?

�

6

?

greedy/sync
greedy/filter

(host2) (host2)

(b) Greedy network.

Figure 3: Two different FlowVR networks to connect the compute and
display modules. Full messages are carried over plain line connec-
tions, while stamps only are sent over dashed line connections.

use FlowVR::XML ’:all’;

parseInput();

addConnection(’compute’,’out’,’display’,’in’);

printResult();

The arguments to the addConnection method are the name and
port of the source and destination modules. As this connection is
a FIFO channel it forces the modules to run at the same frequency.
This synchronous coupling scheme either reduces the framerate of
the display module (if the compute module is the bottleneck), or
introduces latency due to message bufferization.

To correct this behavior, VR applications often use a greedy pat-
tern where the consumer uses the most recent data produced, all
older data being discarded. This enables for instance to retrieve
the last data produced from a tracker independently on the refresh
rates of the producer and the consumer. FlowVR enables to imple-
ment such pattern without having to recompile the module. For that
purpose we use a classical pattern based on a filter and a synchro-
nizer (Fig. 3(b)). Each time the synchronizer greedy/sync receives
an endIt message from display, it selects in its incoming buffer the
newest stamp available and sends it to the filter greedy/filter. This
filter waits to receive the message associated with that stamp, and
forwards it to the display module. All older messages are discarded.
This network is simply built replacing the addConnection call in the
Perl script by

addGreedy(’compute’,’out’,’display’,’in’,

getHosts(’display’),getHosts(’display’),

’display’,’greedy’);

In addition to the source and destination, we need to specify the
location of the synchronizer and the filter (second line), as well
as the module to get the endIt signals from and the prefix to use
to name the created components. In this example we choose to
map the filter and synchronizer on the host2 of the display module.
It favors system reactivity as requesting a new input value is only
based on a local decision. Other configurations can be used. For
instance mapping the filter and synchronizer on host1 would save
network bandwidth by avoiding messages that will be discarded to
be sent over the network.

3 FLOWVR RENDER

FlowVR Render [4] is a shader based parallel rendering frame-
work relying on FlowVR. It takes advantage of the power offered
by graphics clusters to drive display walls or immersive multi-
projector environments like Caves. It defines graphics primitives
using shader programs to propose a high performance communica-
tion protocol:

• Shaders are used to specify the visual appearance of graphics
objects. They require only a few parameters and not the full



complexity of the fixed-function OpenGL state machine. It
leads to a simpler protocol that does not have to manage state
tracking. Those primitives are self-contained.

• Shaders enables to easily take advantage of all features offered
by programmable graphics cards.

• FlowVR Render works in retained-mode. Only updates of
primitives need to be sent.

The rendering framework is based on several viewers creating
the scene and distributed renderers rendering the scene. A viewer
describes primitives sent to a renderer using the FlowVR Render
protocol. The renderer is in charge of rendering this set of primi-
tives. All of them are FlowVR modules.

We developed a wrapper that reads back the image computed
by an OpengGL application, turn it into a FlowVR Render primi-
tive using the image as a texture. It enables to render unmodified
OpenGL applications on multi display environments with FlowVR
Render.

FlowVR Mplayer is a port of the MPlayer Movie Player that
uses FlowVR Render. This enables to play movies on multi display
environments. It aims at taking advantage of the high resolution of
screen walls, and allows to play high resolution videos.

4 VTK-FLOWVR

VTK FlowVR enables to perform VTK data visualization using
FlowVR Render with minimal modifications of the original code.
VTK FlowVR enables to encapsulate VTK code into FlowVR mod-
ules to get access to the FlowVR capabilities for modularizing and
distributing VTK processings.

5 MAKING DEVELOPMENT EASIER

FlowVR provides tools to ease the development or the debugging
of an application:

• FlowVR-GLGraph, an OpenGL based FlowVR network
viewer, gives users the opportunity to display the network of
the instanciated application. It features color handling, zoom,
hiding of uninteresting parts to make the network more read-
able (Fig. 4).

Figure 4: FlowVR OpenGL graph viewer

• FlowVR-GLTrace is a trace visualization tool. FlowVR sup-
ports capture of predefined or user-defined events. Capture
is performed with minimal impact on the execution perfor-
mance. Once stored on disk, FlowVR-GLTrace enable to pro-
cess and display the execution trace. This tool helps debug-
ging by showing the user the chronology of events, the mes-
sages exchanged between the various components involved in
an application (Fig. 5).

Figure 5: FlowVR OpenGL trace viewer

6 EXAMPLES OF APPLICATIONS

Several applications are currently built around FlowVR. They all
have been developed on the GrImage platform.

6.1 GrImage Platform

GrImage (Grid and Image) is a testbed dedicated to interactive ap-
plications. GrImage aggregates commodity components for high
performance video acquisition, computation and graphics render-
ing. Computing power is provided by a PC cluster, with some PCs
dedicated to video acquisition and others to graphics rendering. A
set of digital cameras enables real time video acquisition. The main
goal is to rebuild in real time a 3D model of a scene shot from dif-
ferent view points. A display wall built around commodity video
projectors provides a large, very bright and very high resolution
display (about 3000x4000 pixels). The main goal is to provide a
visualization space for large models and real time interactions.

Currently, GrImage is made of a 16 video projectors wall, 16
bi-opterons, 11 bi-xeons and 6 firewire cameras.

6.2 Realtime 3D Modeling

A large VR application has been developed and run on the GrIm-
age platform. A user in front of the display wall is filmed by the
cameras. The images are processed online to provide a 3D model
of user that is injected into a simulation. The result is visualized on
the display wall. This application enables the user to interact in real
time with the virtual objects (solid objectsas well as fluids) of the
application.

This application is made of about 200 modules, 5000 connec-
tions and 200 filters. It fully takes advantage of the 54 processor of
Grimage.



6.3 Iso Surface Extraction

Using VTK FlowVR and FlowVR Render, we implemented an iso
surface rendering from a 3D fluid simulation dataset of 132×132×
66 cells for 900 timesteps (one timestep is shown in figure 6).

Figure 6: Iso-surface extracted from a frame of a time-varying fluid
simulation dataset.

FlowVR Render outperforms Chromium [11] and shows a better
scalability (Fig. 7), both while increasing the number of renderers
and the number of viewers. FlowVR Render achieves 12 frames per
second with 16 data viewers and 16 renderers to display the result
on the 4× 4 display-wall. Chromium performance is probably af-
fected by the high overhead related to culling and stream merging
operations.

6.4 Volume Rendering

We implemented a shader based volume rendering (Fig. 8) taking
advantage of the massively parallel nature of today’s GPUs. It is
intended for the data sets that can fully be loaded in the memory of
the graphics card. There are several advantage in shader use:

• Due to the massively parallel nature of todays GPUs, pixel
shaders have access to more important resources, both in
terms of memory bandwidth and computing power

• Shaders are able to apply transfer functions to raw volumetric
data to obtain the final color and opacity. So the raw data
needs to be sent only once. Only the transfert function needs
to be updated.

• The use of pre-integrated [9] transfer functions and adaptive
sampling steps [17] allows large datasets while keeping very
high image quality.

Tests were made with a Christmas tree [12] data set (512×512×
512). Performance results are given in table 1. As a comparison,
VTK 2D texturing implementation achieved 0.18 frames per second
on one display.

6.5 Adaptive Octree Computation

An adaptive parallel octree carving algorithm was implemented us-
ing work stealing. The octree computations are performed within
a FlowVR module running on a 16 cores SMP computer. Compu-
tations are parallelized using Posix threads. Video capture and the
resulting octree visualization is performed on the Grimage cluster.
All the communications and flow transformations (compression. . . )
are done by the mean of a FlowVR (Fig. 9).

7 CONCLUSION

We presented the FlowVR suite. It provides a middleware for dis-
tributed interactive application favoring code reuse and modularity.

(a) Chromium (b) Chromium

(c) FlowVR Render (d) FlowVR Render

Figure 7: Parallel iso-surface extraction with sort-first rendering, us-
ing Chromium (a)-(b) or FlowVR Render (c)-(d). Scalability regarding
the number of renderers is presented on the left, while scalability re-
garding the number of viewers is shown on the right.

On top of this middelware FlowVR Render defines a communi-
cation protocol for graphics primitives. It enables an efficient re-
mote rendering on multi display environments. The suite is comple-
mented by a video player based on Mplayer, an OpenGL wrapper
and components for coupling VTK, FlowVR and FlowVR render.

In a near future, we plan to add support for automatic modules
mapping on the target machine. We are also studying volume ren-
dering of large data sets. Another project aims at connecting multi-
ple platforms from different sites with FlowVR.

ACKNOWLEDGMENT

This work was partly funded by ACI project CYBER II, the RNTL
project GEOBENCH, and the BULL company.

REFERENCES

[1] OpenMASK. http://www.irisa.fr/siames/OpenMASK.

[2] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,

and S. Robert. FlowVR: a middleware for large scale virtual reality ap-

plications. In Euro-Par 2004 Parallel Processing: 10th International

Euro-Par Conference, pages 497–505, Pisa, Italia, August 2004.

[3] J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing Pre-

rendering Computations on a Net Juggler PC Cluster. In Immersive

Projection Technology Symposium, Orlando, USA, March 2002.

[4] J. Allard and B. Raffin. A shader-based parallel rendering framework.

In IEEE Visualization Conference, Minneapolis, USA, October 2005.

[5] A.Wierse, U.Lang, and R. Rhle. Architectures of Distributed Visual-

ization Systems and their Enhancements. In Eurographics Workshop

on Visualization in Scientific Computing, Abingdon, 1993.



Method Sampling Framerate on 1 display 4×4 display-wall 4×4 display-wall 4×4 display-wall
steps Resolution 1024×768 4096×3072 2048×1536 1024×768

Raycast Shader 512 1.16 2.25 5.40 8.21
Pre-Integrated Raycast Shader 512 1.10 2.04 4.97 7.70
Pre-Integrated Raycast Shader 200 2.79 5.14 12.44 19.11

Table 1: Volume rendering performances with a 512×512×512 dataset.

Figure 8: Volume rendering on a display wall

[6] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-

Neira. VR Juggler: A Virtual Platform for Virtual Reality Application

Development. In IEEE VR 2001, Yokohama, Japan, March 2001.

[7] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and J. D.

Wood. Distributed and collaborative visualization. Computer Graph-

ics Forum, 23(2), 2004.

[8] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.

Hart. The Cave Audio VIsual Experience Automatic Virtual Envi-

ronement. Communication of the ACM, 35(6):64–72, 1992.

[9] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading. In HWWS ’01:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware, pages 9–16. ACM Press, 2001.

[10] M. Gross, S. Wuermlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,

E. Koller-Meier, T. Svoboda, L. V. Gool, K. S. S. Lang, A. V. Moere,

and O. Staadt. Blue-C: A Spatially Immersive Display and 3D Video

Portal for Telepresence. In Proceedings of ACM SIGGRAPH 03, San

Diego, 2003.

[11] G. Humphreys, M. Houston, R. Ng, S. Ahern, R. Frank, P. Kirchner,

and J. T. Klosowski. Chromium: A Stream Processing Framework for

Interactive Graphics on Clusters of Workstations. In Proceedings of

ACM SIGGRAPH 02, pages 693–702, 2002.

[12] A. Kanitsar, T. Theussi, L. Mroz, M. Sramek, A. V. Bartroli,

B. Csebfalvi, J. Hladuvka, D. Fleischmann, M. Knapp, R. Wegenkittl,

P. Felkel, S. Roettger, S. Guthe, W. Purgathofer, and M. E. Groller.

Christmas tree case study: computed tomography as a tool for master-

ing complex real world objects with applications in computer graph-

ics. In Proceedings of IEEE Visualization’02, pages 489–492, 2002.

[13] B. MacIntyre and S. Feiner. A distributed 3D graphics library. In

M. Cohen, editor, Proceedings of ACM SIGGRAPH 98, pages 361–

370. Addison Wesley, 1998.

[14] W. Matusik and H. Pfister. 3D TV: A Scalable System for Real-Time

Acquisition, Transmission, and Autostereoscopic Display of Dynamic

Scenes. In Proceedings of ACM SIGGRAPH 04, 2004.

Figure 9: Example of octree computed from a set of 8 images

[15] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classifi-

cation of Parallel Rendering. IEEE Computer Graphics and Applica-

tions, 14(4):23–32, July 1994.

[16] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. In-

finiteReality : A Real-Time Graphics System. In Proceedings of ACM

SIGGRAPH 97, pages 293–302, Los Angeles, USA, August 1997.

[17] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart

hardware-accelerated volume rendering. In VISSYM ’03: Proceed-

ings of the symposium on Data visualisation 2003, pages 231–238.

Eurographics Association, 2003.

[18] M. Roth, G. Voss, and D. Reiners. Multi-threading and clustering for

scene graph systems. Computers & Graphics, 28(1):63–66, 2004.

[19] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-

first and sort-last parallel rendering with a cluster of PCs. In ACM

SIGGRAPH/Eurographics Workshop on Graphics Hardware, August

2000.

[20] B. Schaeffer and C. Goudeseune. Syzygy: Native PC Cluster VR. In

IEEE VR Conference, 2003.

[21] S. Singhal and M. Zyda. Networked Virtual Environments - Design

and Implementation. ACM SIGGRAPH Series. ACM Press Books,

2000.

[22] H. Tramberend. Avocado: A distributed virtual reality framework.

In P. A. L. Rosenblum and D. Teichmann, editors, Proceedings IEEE

Virtual Reality 99 ConferencE, pages 14–21, March 1999.


