
Low Complexity On-Line Scheduling Algorithm for Hybrid
Multi-Core Machines

Clément Mommessin Giorgio Lucarelli
Univ. Grenoble Alpes, CNRS, Inria, LIG, F-38000 Grenoble, France

{clement.mommessin, giorgio.lucarelli}@imag.fr

Keywords : on-line scheduling, parallel applications, precedence constraints, CPU, GPU.

1 Introduction
In each new generation of supercomputers the number of computing units increases [11]. The
appearance of new types of computing units, such as General Purpose Graphical Processing
Units (GPUs), along with the Central Processing Units (CPUs) tends to complexify the ar-
chitecture of such platforms. The efficient management of these available resources to execute
parallel applications on distributed platforms is a challenging problem in the domain of High
Performance Computing.

There exist in the literature a huge amount of works dealing with the problem of scheduling
in hybrid machines composed of both CPUs and GPUs. However, most of these works focus
on specific applications. We are interested in generic algorithms which can be applied for any
parallel application. More specifically, we aim to design efficient and low complexity algorithms
for scheduling parallel applications on hybrid machines. An application consists of different
tasks which are subject to precedence relations. We assume that the processing time of each
task in each type of processing units is known in advance by applying appropriate predicting
models [1]. The on-line version of the problem is considered, where tasks arrive one by one in a
list that respects the precedence constraints. An algorithm has to take irrevocable decision on
the scheduling of a task at the time of its arrival. The objective is to minimize the makespan
of the schedule, that is the maximum completion time over all tasks of the application.

Problem definition and notations. We consider a parallel application that has to be
scheduled on m identical CPUs and k identical GPUs. Without loss of generality, we assume
that k ≤ m. The application is composed of a list T of non-preemptable sequential tasks.
Each task Tj is characterized by two processing times depending on which type of processing
unit it will be executed. We denote by pj (resp. pj) the processing time of Tj on a CPU (resp.
GPU) and by Cj its completion time on a given schedule. The relations of precedence between
tasks are represented by a Directed Acyclic Graph G = (V,E) whose nodes are the tasks of
the application and arcs indicate relations of precedence. For each arc (i, j) ∈ E, the task
Tj cannot start its execution before the completion of Ti. We denote by Γ−(Tj) the set of all
predecessors of Tj . To create a schedule, tasks are considered one by one following the original
order of the list T . The optimization objective is to minimize the completion time of the last
finishing task, i.e., minimize Cmax = maxTj∈T {Cj}.

Our contribution and organization of the paper. In this work we study on-line schedul-
ing algorithms for hybrid machines that take into account precedence constraints. Section 2
reviews previous work related to the addressed problem. We present in Section 3 an algorithm
which relies on two greedy rules in order to decide the allocation of a task before applying the
standard List Scheduling policy [9]. We call this algorithm Enhanced Rules - List Scheduling

(ER-LS) and show that it achieves a competitive ratio of Θ(
√

m
k), which can be considered as

constant-factor since the ratio m
k is bounded in practice. Note that the ratio of this algorithm

is asymptotically tight. Section 4 presents an experimental study of ER-LS with two baseline
algorithms. We present the benchmark composed of 6 parallel applications and study the
performance of the algorithms in various machine configurations. Results showed that ER-LS
outperformed the two baseline algorithms with an improvement of more than 16% on average.
Finally, all studied algorithms presented an experimental competitive ratio much smaller than
the theoretical competitive ratio of ER-LS. We conclude and discuss future work in Section 5.

2 Related Work

Since the emergence of hardware accelerators, algorithms have been designed for scheduling
tasks on hybrid machines composed of identical processors (CPUs) and one or several accel-
erators (GPUs). Many studies in the literature concern specific applications while only a few
propose generic methods that deal with precedence constraints.

The problem of scheduling on two types of resources is more complex than the problem of
scheduling tasks on parallel identical machines, but it is easier than the problem on unrelated
machines. Moreover, if all tasks are accelerated by the same factor in the GPU side, then
the hybrid problem coincides with the problem of scheduling on uniformly-related parallel ma-
chines. In this sense, we can say that the former is more general than the latter one. However
in our problem all tasks have only two different processing times, that makes it simpler.

For the off-line version of the addressed problem, Kedad-Sidhoum et al. proposed a 6-
approximation algorithm [10] with an allocation and a scheduling phase. This is the first generic
approach achieving a constant approximation factor. Moreover, Amaris et al. [3] showed that
this ratio was tight. They also modified the second step that improves the performance in
practice but keep the same approximation ratio.

On a more practical side, the Heterogeneous Earliest Finish Time (HEFT) [13] algorithm
is well used in runtime systems such as StarPU [4]. HEFT is a heuristic for scheduling tasks
on unrelated machine, i.e., where the processing time of a task may differ on every machine,
taking into account precedence constraints and communication times. However, HEFT cannot
provide any constant-factor guarantee on its approximation ratio [3, 5].

In on-line mode with a list, Graham’s List Scheduling (LS) [9] is a (2 − 1
m)-competitive

algorithm for the case of only one type of processing units and precedence constraints between
tasks, that also works with unknown processing times. Assuming a variant of the unique games
conjecture, Svensson [12] showed that it was NP-hard to improve this competitive ratio.

On the other hand, Chen et al. [6] showed that LS could not have a competitive ratio smaller
thanm in the context of hybrid machine and proposed a 4-competitive algorithm for scheduling
independent tasks.

No work is known dealing with the on-line case on hybrid machine in the presence of prece-
dence constraints.

3 Algorithm and Theoretical Bounds

We detail in this section the Enhanced Rules - List Scheduling (ER-LS) algorithm and propose
theoretical bounds for its competitive ratio.

The ER-LS algorithm combines two greedy rules, in a similar way as in the 4-competitive
algorithm proposed by Chen et al. [6] when independent tasks are considered. These rules
decide the allocation of a task on either a CPU or a GPU, taking into account the actual
schedule and the processing times of the task. Once the allocation of a task is decided, a

classical List Scheduling algorithm is used to schedule the task as early as possible on the
processor type decided by the rules, taking into account its precedence constraints.

We denote by τgpu the earliest time when at least one GPU is idle. Let also Rj,gpu =
max{τgpu,maxTi∈Γ−(Tj){Ci}} be the ready time of Tj for GPUs, i.e., the earliest time at which
Tj can be executed on a GPU. The two rules are defined as follows:

Rule 1: If pj ≥ Rj,gpu + pj then assign Tj to the GPU side; Otherwise apply Rule 2.

Rule 2: If pj√
m
≤ pj√

k
then assign Tj to the CPU side; Otherwise assign Tj to the GPU side.

3.1 Upper bound

In the following, we propose an analysis of a schedule produced by ER-LS to give an upper
bound of its competitive ratio.

Theorem 1 ER-LS is at most a (4
√

m
k)-competitive algorithm.

Proof : Let WCP U , WGP U and CP be the total load on all CPUs, the total load on all GPUs
and the length of the critical path of a schedule produced by the algorithm, respectively.

Given a schedule produced by ER-LS of makespan Cmax, we can partition the time interval
[0, Cmax] into three possibly non-disjoint subsets as follows:

- ICP : Contains the time slots where at least one CPU and one GPU is idle.

- ICP U : Contains the time slots where all CPUs are busy.

- IGP U : Contains the time slots where all GPUs are busy.

Note that ICP U ∩ IGP U can be non-empty. By the above definitions, for the makespan of the
schedule produced by ER-LS we have:

Cmax ≤ |ICP U |+ |IGP U |+ |ICP | ≤
WCP U

m
+ WGP U

k
+ CP (1)

In the following, we bound the sum of average load of both sides (WCP U

m + WGP U

k) by 3
√

m
k C
∗
max

and the length of the critical path by
√

m
k C
∗
max, with C∗max being the makespan of the optimal

off-line solution of the instance.
We denote by SAcpu (resp. SAgpu) the set containing the tasks placed on the CPU (resp.

GPU) side in both a solution of the algorithm and the optimal solution, by SBgpu the set
containing tasks placed by Rule 1 on the GPU side in a solution of the algorithm but on the
CPU side in the optimal solution, and by SCcpu (resp. SCgpu) the set containing tasks placed
by Rule 2 on the CPU (resp. GPU) side in a solution of the algorithm but on the GPU (resp.
CPU) side in the optimal solution. We also denote by sacpu, sagpu, sbgpu, sccpu and scgpu

the sum of processing times of all tasks in the sets SAcpu, SAgpu, SBgpu, SCcpu and SCgpu,
respectively. Note that we use here the processing times according to the allocation of ER-LS.

Bounding the loads. Consider Tj0 to be the last finishing task in SBgpu. Since the task is
scheduled according to Rule 1, we know that pj0 ≥ Rj0,gpu +pj0 ≥

sbgpu

k . We also know that Tj0

is scheduled on a CPU in the optimal solution so we have pj0 ≤ C∗max and thus: sbgpu

k ≤ C∗max.
Each task in SCgpu is scheduled on the CPU side in the optimal solution. According to Rule

2, the total processing times of tasks in SCgpu in the optimal solution is at least
√

m
k scgpu, so

we have for the cpu side sacpu+
√

m
k

scgpu

m ≤ C∗max. The same reasoning for the GPU side gives
sagpu+

√
k
m

scgpu

k ≤ C∗max.

By adding the three inequalities we have the following:

sbgpu

k
+
sacpu +

√
m
k scgpu

m
+
sagpu +

√
k
msccpu

k
≤ 3C∗max (2)

Separating the loads on CPU and on GPU on the left-hand side of the above inequality and
taking into account that m ≥ k we have:

sacpu

m
+ sccpu√

mk
≥ sacpu + sccpu

m
≥

√
k

m

sacpu + sccpu

m
(3)

and:

sagpu + sbgpu

k
+ scgpu√

mk
≥ sagpu + sbgpu

k
+ scgpu

k

√
k

m
≥

√
k

m

sagpu + sbgpu + scgpu

k
(4)

Summing these two bounds we finally obtain:√
k

m
(sacpu + sccpu

m
+ sagpu + sbgpu + scgpu

k
) ≤ 3C∗max (5)

and thus:
WCP U

m
+ WGP U

k
≤ 3

√
m

k
C∗max (6)

Bounding the critical path. Consider the sets SACP
cpu ⊆ SAcpu, SACP

gpu ⊆ SAgpu, SBCP
gpu ⊆

SBgpu, SCCP
cpu ⊆ SCcpu and SCCP

gpu ⊆ SCgpu to be the sets containing only the tasks belonging
to the critical path obtained by the algorithm, with the same notation in lower case for the
sum of processing times of all tasks in each set and the same notation with a star ∗ for the
sum of processing times of all tasks in the optimal solution.

For the sets SACP
cpu and SACP

gpu, by definition, we have:

saCP
cpu + saCP

gpu = saCP ∗

cpu + saCP ∗

gpu (7)

According to Rule 1, every task in SBCP
gpu has a processing time smaller than that in the

optimal solution, so sbCP
gpu ≤ sbCP ∗

gpu . According to Rule 2, every task Tj in SCCP
cpu (resp. SCCP

gpu)
verifies pj ≤

√
m
k pj (resp. pj ≤

√
k
mpj), so we have scCP

cpu ≤
√

m
k sc

CP ∗

cpu and scCP
gpu ≤

√
m
k sc

CP ∗

gpu .
By summing the previous inequalities for the critical path we get:

CP = saCP
cpu + saCP

gpu + sbCP
gpu + scCP

cpu + scCP
gpu (8)

≤
√
m

k
(saCP ∗

cpu + saCP ∗

gpu + sbCP ∗

gpu + scCP ∗

cpu + scCP ∗

gpu) ≤
√
m

k
CP ∗ (9)

Since CP ∗ ≤ C∗max, we have CP ≤
√

m
k C
∗
max and, combining this inequality with Equations

(1) and (6), the theorem follows. �

3.2 Lower bound

We propose here a lower bound of the competitive ratio of ER-LS. As the following theorem
shows, the competitive ratio of ER-LS is asymptotically tight and we cannot expect a much
better analysis for its upper bound.

Theorem 2 There is an instance for which ER-LS achieves a competitive ratio of Ω(
√

m
k).

Type Number of tasks Processing time on CPU/GPU
A k

√
m /
√
m

B m
√
m /
√
k

TAB. 1: Instance of tasks for which ER-LS achieves an approximation ratio of
√

m
k .

Proof : Consider a hybrid system with m CPUs and k ≤ m GPUs. The instance consists of
m + k tasks that are partitioned into 2 sets as shown in Table 1. The k tasks of type A are
independent to each other and the m tasks of type B are subject to the following precedence
constraints: B1 ≺ B2 ≺ · · · ≺ Bm.

The tasks are ordered in a list by first taking all tasks of type A and then the tasks of type
B respecting the precedences.

The ER-LS algorithm will first place the k tasks of type A on a GPU according to Rule 1.
The completion time of these tasks is

√
m. Then, since

√
m ≤

√
m+

√
k, the task B1 will be

placed on a CPU according to Rule 2, with completion time
√
m. The task B2 will also be

placed on a CPU according to Rule 2, starting at time
√
m and completing at time 2

√
m. With

the same reasoning, each task Bi, i ∈ {1,m} is placed on a CPU according to Rule 2 starting
at time (i − 1)

√
m and completing at time i

√
m. Thus, the schedule produced by ER-LS for

this instance has a makespan of Cmax = m
√
m.

An optimal off-line schedule would have all tasks of type A placed on the CPU side with a
completion time for each task of

√
m. The tasks of type B would be placed on the GPU side

with a completion time for each task Bi, i ∈ {1,m}, of i
√
k. Thus, C∗max = m

√
k.

Hence, ER-LS achieves a competitive ratio
√

m
k for this instance and the theorem holds. �

4 Experiments

In this section we compare the performance of ER-LS with two greedy algorithms by a simu-
lation campaign with 6 different parallel applications1.

4.1 Benchmark and environment

The benchmark is composed of 5 applications generated by Chameleon [8], a dense linear
algebra software, and a more irregular application (fork-join) generated using GGen [7], a
library for generating directed acyclic graphs.

The applications of Chameleon, named getrf, posv, potrf, potri and potrs, are composed of
multiple sequential basic tasks of linear algebra. Different tilings of the matrices have been
used, varying the number of sub-matrices denoted by nb_blocks, from 5 to 20, and their size
denoted by block_size, from 64 to 960. The applications were executed with the runtime
StarPU [4] on a machine with two Dual core Xeon E7 v2 with a total of 10 physical cores with
hyper-threading of 3 GHz and 256 GB of RAM. The machine had 4 GPUs NVIDIA Tesla K20
with each 5 GB of memory and 200 GB/s of bandwidth.

The fork-join application corresponds to a real situation where the execution starts sequen-
tially and then forks to width parallel tasks. The results are aggregated by performing a join
operation, completing a phase. This procedure can be repeated p times, the number of phases.
For our experiments, we used p ∈ {2, 5, 10} and width ∈ {100, 200, 300, 400, 500}. The process-
ing time of each task on CPU was computed using a Gaussian distribution with center p and

1The data set is available under Creative Commons Public Licence at github.com/marcosamaris/
heterogeneous-SWF, last visited on Jan. 2018.

●●●
●
●●
●
●●
●
●●
●●

●

●
●
●●●●●
●
●
●
●
●●●●
●●
●● ●

●
●●●●●
●
●
●
●
●●●●●●●

●
●
●●
●●

●●●●●●●
●
●
●●
●●●●●●●●●●●●●●
●●●

●●●●
●●●
●●

● ● ● ● ● ●

●●●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●
●●●

●
●
●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●●
●●●

●
●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●●●

● ● ● ●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●●

●●

●

●

●

●
●

●●

●

●●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

ER_LS Greedy Random

ge
trf
po

sv
po

trf
po

tri
po

trs

fo
rk

Jo
in

ge
trf
po

sv
po

trf
po

tri
po

trs

fo
rk

Jo
in

ge
trf
po

sv
po

trf
po

tri
po

trs

fo
rk

Jo
in

0

10

20

30

Application

M
ak

es
pa

n
ov

er
 L
P*

●●●●●●●●●●●●●●●●

●

●●
●

●

●
●●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●
●
●●●
●
●●
●
●
●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●●
●
●
●
●●
●
●●●
●

●

●●●

●

●●
●

●

●
●
●

●

●
●●

●
●●●

●

●
●●

●

●

●●

●

●

●
●
●●●●

●

●●●

●
●

●●

●●
●

●
●●●●
●●●●
●

●
●●
●

●●

●
●●●●
●●●●

●

●●
●

●

●●●
●●
●●
●●●
●
●●●●
●
●●●

●●●●
●
●●●

●
●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●
●●●●

●

●●●

●

●
●
●

●

●●●

●
●●●

●

●
●●

●

●

●
●

●

●

●

●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●
●●
●●●
●
●●●●●●●●

●

●●●

●

●
●●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●●
●
●

●●
●
●

●●●
●

●●●●●
●
●
●
●

●
●
●●

●●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●●

●●●●●●●●

●

●●●

●●

●●
●●●●
●●●●
●

●●●

●
●

●●
●●●●
●●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●
●●
●

●●
●

●

●●●

●

●
●●

●

●

●●

●

●

●

●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●●●●
●
●●●
●●●●●●●●●

●

●
●●

●

●
●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●●●

●●

●●

●●●

●
●
●
●●●
●●
●
●

●
●
●●

●●
●

●
●●●

●

●
●●

●

●

●
●

●

●

●●

●●●●●●●●

●

●●●

●

●

●●
●
●●●
●
●●●
●
●
●
●

●●

●●
●●●●
●●●●
●●●●

●

●●●
●
●●●
●
●●●
●
●●●
●
●●●

●

●●●

●

●
●
●

●

●
●●
●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●
●

●
●●

●

●●●

●

●

●●

●

●

●●

●

●

●

● ●●●
●
●●●
●●●●●●●●●

●

●●
●

●

●●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●
●

●
●
●●

●

●
●
●

●
●●●

●

●●●

●

●

●●

●

●

●
●

●●●●

●

●●●

●

●

●
●

●

●

●

●
●●●●●●●●

●
●
●●

●●

●
●
●●●●
●●●●
●
●
●
●

●

●
●
●

●●●●

●●
●●

●
●●
●

●

●

●
●

●
●●●
●●
●●

●
●
●
●

●●
●
●

●

●
●
●

●

●●
●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●
●●
●
●●
●

●

●●
●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●●
●●
●●●
●
●●●●●●●●
●●●●●●●●
●
●●●
●
●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●
●
●●●●●●
●●
●●●
●

●

●●
●
●

●●●
●
●●●
●
●

●●

●

●●
●

●

●●
●
●

●●
●
●

●●●●

●
●●

●●

●
●

●●●

●

●
●●●

●●
●●

●●
●
●

●
●

●
●

●
●●

●

●
●●●

●●●
●

●
●

●
●

●

●●

●
●●
●●

●
●
●
●

●
●●
●

●●

●●
●
●●●

●●

●
●

●

●
●

●

●
●●
●

●●●●●
●●
●
●

●●
●●

●●
●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●
●●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●●

●

●

●
●
●
●●

●

●

●
●●

●

●
●
●

●

●

●
●
●
●
●
●

●
●
●

●

●

●
●●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●●

●
●●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●
●

●

●
●

●
●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●●
●
●
●

●
●
●
●

●

●
●
●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●
●

●
●
●
●

●

●
●

●

●

●

●

●
●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●

● ● ●
●

●
●

0

3

6

9

getrf posv potrf potri potrs forkJoin
Application

G
re

ed
y

/ E
R

−
LS

FIG. 1: Ratio of makespan over LP ∗ for each instance, grouped by application (left). Ratio
between the makespans of Greedy and ER-LS for each instance, grouped by application (right).

standard deviation p
4 . For the processing times on GPU, 5% of tasks within each phase have

an acceleration factor in [0.1, 0.5] while the other tasks have an acceleration factor in [0.5, 50].

We compared the performance, in terms of makespan, of ER-LS with 2 baseline algorithms:
Greedy, which allocates a task on the processor type which has the smallest processing time
for that task; and Random, which randomly assigns a task to the CPU or GPU side. For these
two algorithms, we used List Scheduling to schedule the tasks once the allocation has been
made. The algorithms were implemented in Python (v. 2.8.6). Other policies were tested,
such as Earliest Finish Time, and results are presented in a parallel work of the authors [2].

For the machine configurations, we determined different sets of pairs (Nb_CPUs, Nb_GPUs).
Specifically, we used 16, 32, 64 and 128 CPUs with 2, 4, 8 and 16 GPUs for a total of 16 machine
configurations. We executed the algorithms only once with each combination of application
and machine configuration since all algorithms are deterministic, except Random. The running
time of each algorithm took at most 5 seconds for the biggest instances of applications.

We also computed a lower bound, denoted by LP ∗, of the optimal makespan for each com-
bination of application and machine configuration by solving a linear program. This linear
program, proposed by Kedad-Sidhoum et al. [10], is used to give an allocation of the tasks for
the off-line version of the addressed problem. Since the allocation of tasks allows preemption
and does not provide a schedule, the solution of the linear program gives a good lower bound
on the optimal makespan.

4.2 Results

FIG. 1(left) compares the ratios between the makespan of each algorithm and LP ∗. We observe
that Random is greatly outperformed by the two other algorithms and presents instances with
an approximation ratio larger than 30. We also note that ER-LS presents less outliers than
the two baseline algorithms.

FIG. 1 (right) compares more specifically Greedy and ER-LS by showing the ratio between
the makespans of the two algorithms. We can see that ER-LS outperforms Greedy on average,
with a maximum for the potri application where ER-LS performs 11 times better than Greedy
for a specific instance. In general, there is an improvement of between 8% and 36% on average
for ER-LS depending on the application considered, except for potrs whose makespans are on

●● ●●
●
● ●

●

●

●

●

●

●

●

1

2

3

4

5

6

2 4 6 8
sqrt(m/k)

M
ak

es
pa

n
ov

er
 L
P*

Application
● potri

forkJoin

FIG. 2: Mean competitive ratio and standard error of ER-LS (plain) and Greedy (dashed) as
a function of

√
m
k (right).

average 10% greater than for Greedy.
These observations show that simple allocation rules taking into account the actual sched-

ule can lead to smaller makespans than pure greedy allocations while keeping low-complexity
scheduling policies, which is a desired feature in practice. Moreover, the extra computation of
Rj,gpu in Rule 1 of ER-LS is used afterwards by the List Scheduling algorithm and, thus, the
running time of ER-LS is similar to the running times of the two baseline algorithms.

We also study the performance of the algorithms with respect to the theoretical upper bound
of ER-LS given in Section 3.1. FIG. 2 shows the mean competitive ratios of ER-LS and Greedy
along with their standard error as a function of

√
m
k associated to each instance. To simplify

the lecture, we discard the algorithm Random and only present the applications potri and
fork-join, since other Chameleon applications showed similar results. We observe that the
competitive ratios of the algorithms are smaller than

√
m
k and far from the theoretical upper

bound of 4
√

m
k for ER-LS.

5 Conclusion

We studied the problem of scheduling parallel applications with precedence constraints on
hybrid machines composed of several identical CPUs and GPUs. We focused on designing a
low-complexity algorithm for the on-line context where tasks arrive in order and the scheduler
has to irrevocably make an allocation and scheduling decision at the arrival of each task.

We proposed Enhanced Rules - List Scheduling (ER-LS), the first on-line algorithm taking
into account precedence relations between the tasks with hybrid machines, and showed that
ER-LS achieves an asymptotically tight competitive ratio of Θ(

√
m
k), which can be considered

as constant-factor in practice.
The performance of ER-LS was evaluated in a simulation campaign with 6 different parallel

applications. Experiments showed that ER-LS outperformed two baseline algorithms using a

pure greedy allocation while having a similar running time.

As a future work, we intend to refine the set of rules of ER-LS to better consider the schedule
during the allocation decision, as well as introducing communication times between tasks linked
by precedence.

Acknowledgments

We would like to thank Marcos Amaris, from the University of São Paulo, for providing us with
the experimental benchmark. We also greatly thank Denis Trystram, from Inria Grenoble, for
initiating the work and giving us numerous advice. This work is supported by the ANR Greco
project.

References
[1] M. Amaris, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram. A comparison of

GPU execution time prediction using machine learning and analytical modeling. In IEEE
15th International Symposium on Network Computing and Applications, pages 326–333,
Oct 2016.

[2] M. Amaris, G. Lucarelli, C. Mommessin, and D. Trystram. Generic algorithms for schedul-
ing applications on heterogeneous multi-core platforms. ArXiv preprint 1711.06433, 2017.

[3] M. Amaris, G. Lucarelli, C. Mommessin, and D. Trystram. Generic algorithms for schedul-
ing applications on hybrid multi-core machines. In Euro-Par: 23rd International Confer-
ence on Parallel and Distributed Computing, pages 220–231, Sept 2017.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A unified platform for
task scheduling on heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience, 23(2):187–198, 2011.

[5] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram. Scheduling in-
dependent tasks on multi-cores with GPU accelerators. Concurrency and Computation:
Practice and Experience, 27(6):1625–1638, 2015.

[6] L. Chen, D. Ye, and G. Zhang. Online scheduling of mixed CPU-GPU jobs. International
Journal of Foundations of Computer Science, 25(06):745–761, 2014.

[7] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner. Ran-
dom graph generation for scheduling simulations. In ICST (SIMUTools), 2010.

[8] E. Agullo et al. Poster: Matrices over runtime systems at exascale. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, pages 1330–1331, Nov
2012.

[9] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal On Applied
Mathematics, 17(2):416–429, 1969.

[10] S. Kedad-Sidhoum, F. Monna, and D. Trystram. scheduling tasks with precedence con-
straints on hybrid multi-core machines. In HCW - IPDPS Workshops, pages 27–33, 2015.

[11] TOP500 Supercomputer. http://www.top500.org (last visited on Jan. 2018).

[12] O. Svensson. Hardness of precedence constrained scheduling on identical machines. SIAM
Journal on Computing, 40(5):1258–1274, 2011.

[13] H. Topcuoglu, S. Hariri, and Min-You Wu. Task scheduling algorithms for heterogeneous
processors. In Heterogeneous Computing Workshop (HCW), pages 3–14, 1999.

