
Online Non-preemptive Scheduling in a Resource
Augmentation Model based on Duality

Abhinav Srivastav1,2, Giorgio Lucarelli3, Nguyen Kim Thang4, Denis Trystram1

1 LIG, UMR 5217, Université Grenoble-Alpes
{abhinav.srivastav,denis.trystram}@imag.fr

2 Verimag, Université Grenoble-Alpes
3 INRIA Grenoble Rhône-Alpes
giorgio.lucarelli@inria.fr

4 IBISC, Université d’Evry
thang@ibisc.fr

Mots-clés : online scheduling, average weighted flow-time, primal-dual.

1 Introduction
A well-identified issue in algorithms and, in particular, in online computation is the weak-

ness of the worst case paradigm. Summarizing an algorithm by a pathological worst case can
underestimate its performance on most inputs. Many practically well-performed algorithms
admit a mediocre theoretical guarantee whereas theoretically established algorithms behave
poorly even on simple instances in practice. The need of more accurate models is crucial and is
considered as an important question in algorithmic community. Several models have been pro-
posed in this direction. In this paper, we are interested in studying the resource augmentation
model that compares online algorithms to a weaker adversary. Kalyanasundaram and Pruhs [7]
proposed a speed augmentation model, where an online algorithm is compared against an ad-
versary with slower processing speed. Phillips et al. [9] proposed the machine augmentation
model in which the algorithm has more machines than the adversary. Recently, Choudhury et
al. [4] introduced the rejection model where an online algorithm is allowed to discard a small
fraction of jobs.

In this context, we study the problem of online non-preemptive scheduling a set of jobs on
unrelated machines in order to minimize the average weighted time a job remains in the system
(average weighted flow-time). This is a well representative hard problem since a strong lower
bound of Ω(

√
n) exists even for the offline unweighted version of the problem on a single ma-

chine [8], where n is the number of jobs. For the online setting, any algorithm without resource
augmentation has at least Ω(n) competitive ratio, even for single machine [3]. Moreover, in
contrast to the preemptive case, we can show that no deterministic algorithm has bounded
competitive ratio when preemptions are not allowed even if we consider a single machine which
has arbitrary large speed augmentation. In this paper, we present a competitive algorithm in
a model which combines speed augmentation and the rejection model.

Problem Definition and Notation. We are given a setM of m unrelated machines. The
jobs arrive online, that is we learn about the existence and the characteristics of a job only
after its release. Let J denote the set of all jobs of our instance, which is not known a priori.
Each job j ∈ J is characterized by its release time rj , its weight wj and if job j is executed on
machine i ∈M then it has a processing time pij . We study the non-preemptive setting, meaning
that a job is considered to be completed only if it is fully processed in one machine without
interruption during its execution. This definition allows the interruption of jobs. However, if
the execution of a job is interrupted then it has to be processed entirely later on in order



to be considered as completed. In this paper, we consider a stronger non-preemptive model
according to which we are only allowed to interrupt a job if we reject it, i.e., we do not permit
restarts. Moreover, each job has to be dispatched to one machine at its arrival and migration
is not allowed. Given a schedule S, we denote by Cj the completion time of the job j. Then, its
flow-time is defined as Fj = Cj − rj , that is the total time that j remains in the system. Our
objective is to create a non-preemptive schedule that minimizes the total weighted flow-times
of all jobs, i.e.,

∑
j∈J wjFj .

In what follow, let δij = wj
pij

be the density of a job j ∈ J on machine i ∈ M. Moreover,
let qij(t) be the remaining processing time at time t of a job j ∈ J which is dispatched at
machine i ∈ M. A job j ∈ J is called pending at time t, if it is already released at t but not
yet completed, i.e., rj ≤ t < Cj . Finally, let P = maxj,j′∈J {pj/pj′}.

RelatedWork. For the online non-preemptive scheduling problem of minimizing total weigh-
ted flow-time, no competitive algorithm for unrelated machines even with resource augmen-
tation is known ; that is in contrast to the preemptive version which has been well stu-
died [1, 10]. For identical machines, Phillips et al. [9] gave a constant competitive algorithm
that usesm logP machines (recall that the adversary usesm machines). Moreover, an O(log n)-
machine O(1)-speed algorithm that returns the optimal schedule has been presented in [9]
for the unweighted flow-time objective. Epstein and van Stee [5] proposed an `-machines
O(min{

√̀
P ,
√̀
n})-competitive algorithm for the unweighted case on a single machine. This

algorithm is optimal up to a constant factor for constant `. For the offline non-preemptive
single machine setting, Bansal et al. [2] gave a 12-speed (2+ ε)-approximation polynomial time
algorithm. Recently, Im et al. [6] gave a (1 + ε)-speed (1 + ε)-approximation quasi-polynomial
time algorithm for the setting of identical machines.

2 Scheduling to Minimize Total Weighted Flow-time

Linear Programming Formulation. For each machine i ∈M, job j ∈ J and time t ≥ rj ,
we introduce a binary variable xij(t) which indicates if j is processed on i at time t. We
consider the following linear programming formulation. Note that the objective value of this
linear program is based on two lower bounds on the flow-time of each job j ∈ J , namely its
fractional flow-time (

∫∞
rj

1
pij

(t − rj)xij(t)dt) and its processing time (pij =
∫∞
rj
xij(t)dt). After

relaxing the integrality constraints, we get also the corresponding dual program.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

δij(t− rj + pij)xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J (1)∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t (2)

xij(t) ∈ {0, 1}

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤ δij (t− rj + pij) ∀i ∈M, j ∈ J , t ≥ rj (3)

λj , γi(t) ≥ 0

We will interpret the resource augmentation models in the above primal and dual programs as
follows. In speed augmentation, we assume that all machines in the schedule of our algorithm
run with speed 1, while in adversary’s schedule they run at a speed a < 1. This can be
interpreted in the primal linear program by modifying the constraint (2) to be

∑
j∈J xij(t) ≤ a.

Intuitively, each machine in the adversary’s schedule can execute jobs with speed at most a
at each time t. The above modification in the primal program reflects to the objective of the
dual program which becomes

∑
j∈J λj−a

∑
i∈M

∫∞
0 γi(t)dt. In the rejection model, we assume

that the algorithm is allowed to reject some jobs. This can be interpreted in the primal linear
program by summing up only on the set of the non rejected jobs. Hence the objective becomes



∑
i∈M

∑
j∈J\R

∫∞
rj
δij (t− rj + pij) dt. Concluding, our algorithm rejects a set R of jobs, uses

machines with speed 1/a times faster than that of the adversary and, by using weak duality,
has a competitive ratio at most∑

i∈M
∑
j∈J\R

∫∞
rj
δij(t− rj + pij)dt∑

j∈J λj − a
∑
i∈M

∫∞
0 γi(t)dt

Algorithm and Dual Variables. We describe next the scheduling, the rejection and the
dispatching policies of our algorithm which we denote by A. In parallel, we give the intuition
about the definition of the dual variables in a primal-dual way. Let εs > 0 and 0 < εr < 1
be constants arbitrarily small. Intuitively, εs and εr stand for the speed augmentation and the
rejection fraction of our algorithm, respectively. We assume that in the schedule created by A
all machines run with speed 1, while in the adversary’s schedule they run by speed 1

1+εs .
Each job is immediately dispatched to a machine upon its arrival. We denote by Qi(t) the

set of pending jobs at time t dispatched to machine i ∈ M, i.e., the set of jobs dispatched
to i that have been released but not yet completed or rejected at t. Our scheduling policy for
each machine i ∈ M is the following : at each time t when the machine i becomes idle or
has just interrupted some job, we start executing on i the job j ∈ Qi(t) such that j has the
largest density in Qi(t), i.e., j = argmaxj′∈Qi(t){δij′}. In case of ties, we select the job that
arrived earliest. When a machine i ∈M starts executing a job k ∈ J , we introduce a counter
vk which is initialized to zero. Each time when a job j ∈ J with δij > δik is released during
the execution of k and j is dispatched to i, we increase vk by wj . The rejection policy is the
following : we interrupt the execution of the job k and we reject it the first time where vk > wk

εr
.

Let ∆ij be the increase in the total weighted flow-time occurred in the schedule of our
algorithm if we assign a new job j ∈ J to machine i, following the above scheduling and
rejection policies. Assuming that the job k ∈ J is executed on i at time rj , we have that

∆ij =



wj

(
qik(rj) +

∑
`∈Qi(rj )\{k}:

δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj )\{k}:

δi`<δij

w` if vk + wj ≤ wk
εr
,

wj
∑

`∈Qi(rj ):
δi`≥δij

pi` +
(
pij

∑
`∈Qi(rj ):
δi`<δij

w` − qik(rj)
∑

`∈Qi(rj )∪{k}:
6̀=j

w`

)
otherwise.

where, in both cases, the first term corresponds to the weighted flow-time of the job j if it is
dispatched to i and the second term corresponds to the change of the weighted flow-time for
the jobs in Qi(rj). Note that, the second case corresponds to the rejection of k and thus we
remove the term wjqik(rj) in the weighted flow-time of j, while the flow-time of each pending
job is reduced by qik(rj).

In the definition of the dual variables, we aim to charge to job j the increase ∆ij in the total
weighted flow-time occurred by the dispatching of j in machine i, except from the quantity
wjqik(rj) which will be charged to job k, if δij > δik. However, we will use the dual variables to
guide the dispatching policy. The charges have to be distributed in a consistent manner to the
assignment decisions of jobs to machines in the past. In order to do the charging, we introduce
a prediction term : at the arrival of each job j we charge to it an additional quantity of wjεr pij .
The consistency is maintained by the rejection policy : if the charge from future jobs exceeds
the prediction term of some job then the latter will be rejected. Based on the above, we define

λij =


wj
εr
pij + wj

∑
`∈Qi(rj):δi`≥δij

pi` + pij
∑

`∈Qi(rj)\{k}:δi`<δij

w` if δij > δik

wj
εr
pij + wj

(
qik(rj) +

∑
`∈Qi(rj)\{k}:δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj):δi`<δij

w` otherwise

which represents the total charge for job j if it is dispatched to machine i. Note that the only
difference in the two cases of the definition of λij is that we charge the quantity wjqik(rj) to



j only if δij ≤ δik. Moreover, we do not consider the negative quantity that appears in the
second case of ∆ij . Intuitively, we do not decrease our estimation for the completion times of
pending jobs when a job is rejected. The dispatching policy is the following : dispatch j to the
machine i∗ = argmini∈M{λij}. Intuitively, a part of ∆ij may be charged to job k, and more
specifically to the prediction part of λik. However, we do not allow to exceed this prediction
by applying rejection. In other words, the rejection policy can be re-stated informally as : we
reject k just before we exceed the prediction charging part in λik.

In order to track the negative terms in ∆ij , for each job j ∈ J we denote by Dj the set of
jobs that are rejected by the algorithm after the release time of j and before its completion
or rejection (including j in case it is rejected), that is the jobs that cause a decrease to the
flow-time of j. Let jk be the job released at the moment we reject a job k ∈ R. We say that
a job j ∈ J dispatched to machine i ∈ M is definitively finished

∑
k∈Dj qik(rjk) time after its

completion or rejection. Let Ui(t) be the set of jobs that are dispatched to machine i ∈M, are
already completed or rejected at a time before t, but are not yet definitively finished at t.

It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set
λj = εr

1+εr mini∈M{λij} and we never change λj again. Let Wi(t) be the total weight of jobs
dispatched to machine i ∈ M in the schedule of A, and either they are pending at t or
they are not yet definitively finished at t, i.e., Wi(t) =

∑
`∈Qi(t)∪Ui(t) w`. Then, we define

γi(t) = εr
1+εrWi(t). Note that γi(t) is updated during the execution of A. Specifically, given any

fixed time t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj , t). However, γi(t)
does never decrease in the case of rejection since the jobs remain in Ui(t) for a sufficient time
after their completion or rejection. Based on these definitions, the following theorem holds.

Theorem 1 Given any εs > 0 and εr ∈ (0, 1), A is a (1 + εs)-speed 2(1+εr)(1+εs)
εrεs

-competitive
algorithm that rejects jobs of total weight at most εr

∑
j∈J wj.

Références
[1] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time

explained by dual fitting. In Symposium on Discrete Algorithms, pages 1228–1241, 2012.
[2] Nikhil Bansal, Ho-Leung Chan, Rohit Khandekar, Kirk Pruhs, B Schicber, and Cliff Stein.

Non-preemptive min-sum scheduling with resource augmentation. In Proc. 48th Sympo-
sium on Foundations of Computer Science, pages 614–624, 2007.

[3] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted
flow time. In Proc. of the ACM symposium on Theory of computing, pages 84–93, 2001.

[4] Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar. Rejecting
jobs to minimize load and maximum flow-time. In Proc. Symposium on Discrete Algo-
rithms, pages 1114–1133, 2015.

[5] Leah Epstein and Rob van Stee. Optimal on-line flow time with resource augmentation.
Discrete Applied Mathematics, 154(4) :611–621, 2006.

[6] Sungjin Im, Shi Li, Benjamin Moseley, and Eric Torng. A dynamic programming frame-
work for non-preemptive scheduling problems on multiple machines [extended abstract].
In Proc. 26th ACM-SIAM Symposium on Discrete Algorithms, pages 1070–1086, 2015.

[7] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4) :617–643, 2000.

[8] Hans Kellerer, Thomas Tautenhahn, and Gerhard J. Woeginger. Approximability and
nonapproximability results for minimizing total flow time on a single machine. SIAM J.
Comput., 28(4) :1155–1166, 1999.

[9] Cynthia A Phillips, Clifford Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. Algorithmica, 32(2) :163–200, 2002.

[10] Nguyen Kim Thang. Lagrangian duality in online scheduling with resource augmentation
and speed scaling. In Proc. 21st European Symposium on Algorithms, pages 755–766, 2013.


