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1 Introduction
According to the speed scaling mechanism for saving energy in computing systems, if a

processor runs at speed s(t) at a time t then the power needed is P (s(t)) = s(t)α, where
α > 1 is a small constant that depends on the processor. The energy consumption is the
power integrated over time, i.e., E =

∫
P (s(t))dt. The algorithmic study of the speed scaling

mechanism is initiated by Yao et al. [6] in 1995. Since then, there is a series of works in this
setting (see the survey [1]).

We consider the following scheduling problem : we are given a set of jobs J which have to
be scheduled on m speed-scalable parallel processors. Each job j ∈ J is characterized by an
amount of work wj and a release date rj . We do not allow preemptions of the jobs, i.e., the
interruption of the execution of a job is not permitted. There are precedence constraints among
the jobs which are represented in the form of a directed acyclic graph G = (V,A). The set of
vertices V contains one vertex for each job and the arc (j, j′) belongs to the set of arcs A if and
only if the job j is constrained to precede the job j′ (i.e., j′ cannot start until j is completed).
We denote by C the set of all the possible paths in G. For a path c ∈ C, we denote by J (c) the
set of jobs which appear in c and by r(c) the release date of the first job in the path. Given the
processing times of the jobs, the length of a path c ∈ C is the sum of the processing times of
the jobs in c. Our objective is to find a feasible schedule with minimum total completion time
(makespan) so that the energy consumption is not greater than a given energy budget E.

The problem without release dates was studied by Pruhs et al. in [4]. Their approach is based
on constant power schedules, which are schedules that keep the total power of all processors
constant over time. Based on this property and by performing a binary search to determine
the value of the power, they transform the problem to the classical problem of minimizing the
makespan for scheduling a set of jobs with precedence constraints on related parallel proces-
sors, in which each processor runs at a single predefined speed. Using the known O(logm)-
approximation algorithm for the latter problem presented in [2], they give an approximation
algorithm of ratio O(log1+2/αm) for the speed scaling problem with precedence constraints.

When the energy consumption is not taken into account, the speed scaling problem reduces
to the classical makespan minimization scheduling problem on identical parallel processors
with precedence constraints which is known to be NP-hard. Graham [3] proved that the simple
List Scheduling algorithm is a (2 − 1

m)-approximation algorithm for it. On the negative side,
Svensson [5] showed that it is NP-hard to improve upon this approximation ratio, assuming a
new variant of the unique games conjecture.
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2 A 2-approximation algorithm
We propose a simple 2-approximation algorithm for the speed scaling problem with prece-

dence constraints and release dates, generalizing the problem studied by Pruhs et al. in [4],
improving upon their proposed ratio of O(log1+2/αm) and matching the ratio for the classical
setting. Our approach is based on the lower bounds for the optimal solution used by Graham
in the analysis of the List Scheduling algorithm for the corresponding classical problem.
Theorem 1. [3] Let C be the makespan of the schedule produced by the List Scheduling al-
gorithm for the classical problem with precedence constraints and release dates, and C∗ be the
makespan of the corresponding optimal schedule. Then,

C ≤ 2 ·max
{

1
m

∑
j∈J pj ,maxc∈C

{
r(c) +

∑
j∈J (c) pj

}}
≤ 2 · C∗

Note that, in an optimal schedule for the speed scaling problem, each job j ∈ J is executed
with a constant speed sj due to the convexity of the speed-to-power function. Given this speed
we can compute its processing time pj = wj

sj
and its energy consumption Ej = wjs

α−1
j =

wαj
pα−1
j

. Based on this observation and the lower bounds of Theorem 1, we propose a convex
programming relaxation for the speed scaling problem. We introduce a variable y for the
makespan and a variable xj for each job j ∈ J which corresponds to the processing time of j.

min y

y ≥ 1
m

∑
j∈J

xj

y ≥ r(c) +
∑
j∈J (c)

xj ∀c ∈ C

∑
j∈J

wα
j

xα−1
j

≤ E

xj ≥ 0 ∀j ∈ J

By solving this convex program, we define a processing time, for each job. As these processing
times respect the energy budget, we are able to transform our problem to the classical problem
without speed scaling and we use the List Scheduling algorithm to obtain a feasible schedule.
Note that, the proposed convex program has an exponential number of constraints as the
number of paths may be exponential to the size of the instance. However, we can give an
equivalent convex programming relaxation of polynomial size. The following theorem follows.
Theorem 2. There is a polynomial-time 2-approximation algorithm for the makespan mini-
mization speed scaling problem with precedence constraints and release dates.
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