
Athens University of Economics and Business
Department of Informatics
Graduate Program in Computer Science

Scheduling in Computer and Communication Systems

and

Generalized Graph Coloring Problems

Ph.D. Thesis

by

Giorgio Lucarelli

Athens, October 2009

Athens University of Economics and Business
Department of Informatics
Graduate Program in Computer Science

Scheduling in Computer and Communication Systems
and

Generalized Graph Coloring Problems

Ph.D. Thesis by Giorgio Lucarelli

Advisory committee: Ioannis Milis (Supervisor)
Evangelos Magirou
Martha Sideri

Approved on the 2nd October 2009 by

Elias Koutsoupias, Professor
Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

Evangelos Magirou, Professor
Department of Informatics
Athens University of Economics and Business

Ioannis Milis, Associate Professor
Department of Informatics
Athens University of Economics and Business

Vangelis Th. Paschos, Professor
LAMSADE
Université Paris-Dauphine

Martha Sideri, Associate Professor
Department of Informatics,
Athens University of Economics and Business

Stathis Zachos, Professor
School of Electrical and Computer Engineering
National Technical University of Athens

Vassilis Zissimopoulos, Professor
Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

Acknowledgements

Before beginning, I would like to thank my supervisor Ioannis Milis for his support
and mentoring over these years. I would also like to thank the members of my advi-
sory committee, Evangelos Magirou and Martha Sideri, as well as, the members of
the evaluation committee, Elias Koutsoupias, Vangelis Th. Paschos, Stathis Zachos
and Vassilis Zissimopoulos, for their observations and comments.

During my doctorate, I worked with Evripidis Bampis, Nicolas Bourgeois, Alexan-
der Kononov, Ioannis Milis and Vangelis Th. Paschos. I want to thank them all for
the collaboration.

My graduate studies were funded by the project PENED 2003. The project
is cofinanced 75% of public expenditure through EC–European Social Fund, 25%
of public expenditure through Ministry of Development–General Secretariat of Re-
search and Technology of Greece and through private sector, under measure 8.3
of Operational Programme “Competitiveness” in the 3rd Community Support Pro-
gramme.

Many thanks to my friends Danae, Michael and Pantelis for going out and having
a great time. Finally, special thanks to Katerina for her patience and support for
more than ten years.

Contents

Contents i

Summary iii

PerÐlhyh v

1 Introduction 1

1.1 Generalized graph coloring problems 1

1.2 Motivation: Scheduling in computer and communication systems . . 2

1.3 Organization of the thesis . 4

2 Related work 7

2.1 Vertex/Edge-Coloring . 7

2.2 Bounded Vertex/Edge-Coloring . 8

2.3 Max-Vertex/Edge-Coloring . 10

2.4 Bounded Max-Vertex/Edge-Coloring 12

3 Preliminaries and Notation 13

3.1 Preliminaries . 13

3.2 Notation . 16

4 Max-Edge-Coloring on general and bipartite graphs 17

4.1 Preliminaries . 17

4.2 f(∆)-approximation algorithms for bipartite graphs 20

4.3 An 1.74-approximation algorithm for bipartite graphs 29

4.4 Bi-valued graphs . 32

5 Max-Edge-Coloring on trees 35

5.1 Stars of chains . 35

5.2 A 3/2 approximation algorithm . 37

5.3 Moderately exponential approximation algorithms 40

5.4 Polynomial Time Approximation Scheme 46

i

ii Contents

6 Bounded Max-Edge-Coloring 49
6.1 General and bipartite graphs . 49
6.2 NP-completeness for trees . 53
6.3 A 2-approximation algorithm for trees 55

7 Bounded Max-Vertex-Coloring 57
7.1 A simple split algorithm . 57
7.2 A generic scheme . 58

8 Conclusions and open questions 61

Bibliography 65

Summary

The thesis deals with weighted generalizations of the classical graph vertex/edge-
coloring problems motivated by scheduling arising in computer and communication
systems.

The most general problems we attack are called bounded max-vertex/edge-
coloring problems and take as input a vertex/edge weighted graph and a bound
b. In these problems each color class is of cardinality at most b and of weight equal
to that of the heaviest vertex/edge in this class. The objective is to find a proper
coloring of the input graph minimizing the sum of all color classes’ weights. For unit
weights these problems reduce to the known bounded coloring problems, while in the
absence of the cardinality bound we get the (unbounded) max-coloring problems.

The max-coloring problems have been well motivated and studied in the litera-
ture. Max-vertex-coloring problems arise in the management of dedicated memories,
organized as buffer pools, which is the case for wireless protocol stacks like GPRS or
3G. Max-edge-coloring problems arise in switch based communication systems, like
SS/TDMA, where messages are to be transmitted through direct connections estab-
lished by an underlying network. Moreover, max-coloring problems correspond to
scheduling jobs with conflicts in multiprocessor or batch scheduling environments.
However, in all practical applications there exist physical constraints on the number
of entities (corresponding to vertices/edges of a graph) assigned the same resource
(color), which motivate the study of the bounded max-coloring problems.

In the first part of the thesis we present new complexity and approximation
results for several variants of the max-edge-coloring problem with respect to the
class of the underlying graph. In particular, we present polynomial algorithms for
special graph classes (bounded degree trees, stars of chains) and approximation
results for NP-complete variants. For bipartite graphs we present a series of four
approximation algorithms; the last of them achieves an 1.74 approximation ratio and
improves substantially the known ratio of 2. For trees we give a 3/2-approximation
algorithm, two parameterized approximation algorithms and finally a PTAS. We
also prove that the problem is NP-complete for complete bi-valued graphs and we
present an asymptotic 4/3-approximation algorithm for general bi-valued graphs.

In the second part of the thesis we give the first known results for the bounded
max-coloring problems. For the bounded max-edge-coloring problem, we prove ap-
proximation factors of at most 3 for general and bipartite graphs and 2 for trees.
Furthermore, we show that this bounded problem is NP-complete for trees. This is
the first complexity result for any max-coloring problem on trees. For the bounded

iii

iv Summary

max-vertex-coloring problem we present a generic scheme which becomes a 17/11-
approximation algorithm for bipartite graphs, a PTAS for bipartite graphs when b
is fixed and also a PTAS for trees even if b is part of the problem’s instance.

PerÐlhyh

H ereunhtik ergasÐa pou parousi�zetai sth diatrib epikentr¸netai sthn antimet¸-
pish anoikt¸n erwthm�twn pou aforoÔn thn poluplokìthta kai thn proseggisimìthta
genikeumènwn problhm�twn qrwmatismoÔ (coloring) twn kìmbwn/akm¸n enìc gr�fou,
ta opoÐa prokÔptoun wc probl mata qronoprogrammatismoÔ se sust mata upolo-
gist¸n kai epikoinwni¸n.

Ta genikìtera apì ta probl mata pou melet¸ntai onom�zontai probl mata frag-
mènou mègistou qrwmatismoÔ kìmbwn/akm¸n (bounded max-vertex/edge-coloring).
Se aut� ta probl mata dedomènou enìc gr�fou me b�rh stouc kìmbouc/akmèc kai enìc
akeraÐou b, anazhtoÔme èna qrwmatismì twn kìmbwn/akm¸n tou gr�fou ìpou k�je
qr¸ma qrhsimopoieÐtai to polÔ b forèc kai to b�roc tou isoÔtai me to b�roc tou
megalÔterou kìmbou/akm c pou perièqei. Stìqoc eÐnai h eÔresh enìc qrwmatismoÔ o
opoÐoc elaqistopoieÐ to �jroisma twn bar¸n ìlwn twn qrwm�twn. Sthn perÐptwsh
ìpou ta b�rh eÐnai ìla Ðdia, ta probl mata aut� eÐnai gnwst� wc probl mata fragmè-
nou qrwmatismoÔ kìmbwn/akm¸n (bounded coloring), en¸ an den up�rqei periorismìc
sthn emf�nish twn qrwm�twn prokÔptoun ta probl mata mègistou qrwmatismoÔ kìmb-
wn/akm¸n (max-coloring).

Ta probl mata mègistou qrwmatismoÔ èqoun melethjeÐ sth bibliografÐa ta teleu-
taÐa qrìnia kai gia kajèna apì aut� èqoun parousiasteÐ praktikèc efarmogèc tou se
probl mata qronoprogrammatismoÔ se sust mata upologist¸n kai epikoinwni¸n. To
prìblhma mègistou qrwmatismoÔ kìmbwn emfanÐzetai se sust mata diaqeÐrishc mn mhc
organwmènhc se dexamenèc, ìpwc gia par�deigma sumbaÐnei me th diaqeÐrish thc stoÐbac
prwtokìllwn sta sÔgqrona sust mata kinht c thlefwnÐac (GPRS kai 3G). To prìblh-
ma mègistou qrwmatismoÔ akm¸n emfanÐzetai se sust mata metagwg c mhnum�twn,
p.q. sta doruforik� sust mata epikoinwni¸n (SS/TDMA), ìpou ta mhnÔmata prèpei
na metaferjoÔn mèsw apeujeÐac sundèsewn pou egkajidrÔontai apì èna upokeÐmeno
dÐktuo epikoinwni¸n. EpÐshc, ta probl mata mègistou qrwmatismoÔ antistoiqoÔn sto
qronoprogrammatismì amoibaÐwc apokleiìmenwn ergasi¸n se perib�llonta poluepex-
ergast¸n epexergasÐac desm¸n ergasi¸n. Se ìlec tic parap�nw efarmogèc, up�r-
qoun sthn pr�xh fusikoÐ periorismoÐ ston arijmì twn ontot twn (pou antistoiqoÔn
stouc kìmbouc/akmèc enìc gr�fou) pou eÐnai dunatìn na anatejoÔn ston Ðdio fusikì
pìro (qr¸ma). Oi periorismoÐ odhgoÔn sta probl mata fragmènou mègistou qrwma-
tismoÔ pou melet¸ntai gia pr¸th for�.

Sto pr¸to mèroc aut c thc diatrib c parousi�zontai apotelèsmata poluplokìth-
tac kai proseggisimìthtac tou probl matoc mègistou qrwmatismoÔ akm¸n gia di�forec
kl�seic gr�fwn. Pio sugkekrimèna, parousi�zontai poluwnumikoÐ algìrijmoi gia ei-

v

vi PerÐlhyh

dikèc kl�seic gr�fwn (dèntra fragmènou bajmoÔ kai astèria alusÐdwn) kaj¸c kai
proseggistikoÐ algìrijmoi gia kl�seic gr�fwn ìpou to prìblhma eÐnai NR-pl rec.
Gia dimereÐc gr�fouc dÐnetai mÐa seir� apì tèsseric proseggistikoÔc algorÐjmouc, apì
touc opoÐouc o teleutaÐoc belti¸nei ton lìgo prosèggishc apì 2 se 1.74. Gia dèntra
parousi�zetai ènac algìrijmoc me lìgo prosèggishc 3/2, dÔo parametrikoÐ algìrijmoi
kai tèloc èna proseggistikì sq ma. EpÐshc, apodeiknÔetai ìti to prìblhma eÐnai NR-
pl rec se pl reic gr�fouc me mìno dÔo diaforetik� b�rh stic akmèc touc kai dÐnetai
ènac algìrijmoc me asumptwtikì lìgo prosèggishc 4/3 gia genikoÔc gr�fouc me dÔo
b�rh.

Sto deÔtero mèroc thc diatrib c parousi�zontai ta pr¸ta apotelèsmata gia prob-
l mata fragmènou mègistou qrwmatismoÔ. Gia to prìblhma fragmènou mègistou qrw-
matismoÔ akm¸n, dÐnontai algìrijmoi me lìgo prosèggishc 3 gia genikoÔc kai dimereÐc
gr�fouc kai 2 gia dèntra. Epiprosjètwc, apodeiknÔetai ìti to prìblhma eÐnai NR-
pl rec gia dèntra, to opoÐo eÐnai to pr¸to apotèlesma poluplokìthtac gia ìla ta
probl mata (fragmènou) mègistou qrwmatismoÔ se dèntra. Gia to prìblhma fragmè-
nou mègistou qrwmatismoÔ kìmbwn parousi�zetai èna genikeumèno sq ma, mèsw tou
opoÐou epitugq�netai (i) lìgoc prosèggishc 17/11 gia dimereÐc gr�fouc, (ii) èna pros-
eggistikì sq ma gia dimereÐc gr�fouc an to b eÐnai fragmèno kai (iii) èna proseggistikì
sq ma gia dèntra akìma kai an to b apoteleÐ mèroc tou stigmiìtupou tou probl matoc.

Chapter 1

Introduction

In this first chapter of the thesis, we introduce weighted generalizations of the clas-
sical vertex and edge coloring problems, which correspond to scheduling problems
arising in computer and communication systems. We also give an outline of the next
chapters of the thesis and a preview of our results.

1.1 Generalized graph coloring problems

A vertex- (resp. edge-) coloring of a graph G = (V,E) is a partition C = {C1, C2,
. . . , Ck} of its vertex (resp. edge) set into color classes such that each class Ci

constitutes an independent set (resp. matching) of G. Such a coloring is called a
proper coloring of G. The classical vertex- (resp. edge-) coloring problem asks for a
proper coloring of a graph G such that the number, k, of colors is minimized. This
minimum number of colors required to color the vertices (resp. edges) of a graph G
is also known as the chromatic number χ(G) (resp. chromatic index χ′(G)) of G.

In the bounded vertex-coloring [4] (resp. bounded edge-coloring [2]) problem we
are, in addition, given a positive integer b and we ask for a proper coloring where
each color appears at most b times, i.e., |Ci| ≤ b, 1 ≤ i ≤ k. The goal in both
bounded coloring problems is also to minimize the number, k, of colors.

In several application domains the following weighted generalizations of graph
coloring problems arise: Each vertex u (resp. edge e) of G is associated with a
positive integer weight w(u) (resp. w(e)) and we ask again for a partition C =
{C1, C2, . . . , Ck} of the vertex (resp. edge) set of G into color classes, each one of
weight wi = max{w(v) | v ∈ Ci}, (resp. wi = max{w(e) | e ∈ Ci}), such that the
total weight of the partition W =

∑k
i=1wi is minimized. These coloring problems

are known as max-(vertex-)coloring [52] and max-edge-coloring.
The presence of a bound b to the cardinality of each color leads to the bounded

max-vertex-coloring and bounded max-edge-coloring problems, respectively.

In this thesis we shall denote the above coloring problems as follows:

• VC/EC: vertex/edge-coloring problem

1

2 Introduction

• VC(b)/EC(b): bounded vertex/edge-coloring problem

• VC(w)/EC(w): max-vertex/edge-coloring problem

• VC(w, b)/EC(w, b): bounded max-vertex/edge-coloring problem

where VC and EC are used to denote the vertex and edge versions of the classical
coloring problem, respectively, b indicates the existence of a cardinality bound to
colors, and w shows the existence of weights on the vertices or the edges of the input
graph.

Clearly, both VC(b) and VC(w) reduce to the classical VC problem, if b = |V |
and w(u) = 1, ∀u ∈ V , respectively. Moreover, VC(w, b) reduces to all VC, VC(b)
and VC(w) problems. Analogous reductions exist between the EC, EC(b), EC(w)
and EC(w, b) problems. These reductions are shown in Figure 1.1, where each
directed edge indicates that the source problem reduces to the destination one.

VC(w, b) EC(w, b)
↙ ↘ ↙ ↘

VC(w) VC(b) EC(w) EC(b)

↘ ↙ ↘ ↙
VC EC

Figure 1.1: Reductions between coloring problems.

Remark that any generalization of the edge-coloring problem on a general graph
G is equivalent to the corresponding vertex-coloring problem on the line graph,
L(G), of G. Thus, the results for any vertex-coloring problem on a graph G apply
also to the corresponding edge-coloring one on the graph L(G) and vice versa, if
both G and L(G) are in the same graph class. Note, however, that this is true for
general graphs and chains, but not for the most other special graph classes, including
bipartite graphs and tree, since they are not closed under line graph transformation
(e.g., the line graph of a bipartite graph is not anymore a bipartite one).

1.2 Motivation: Scheduling in computer and communi-
cation systems

In this section we motivate both vertex and edge variants of our coloring problems
as scheduling problems arising in computer and communication systems.

In many applications with strict memory constraints a dedicated memory allo-
cation manager is often used in order to optimize the memory utilization and the
performance of the system. For example, in wireless communications [51, 52], where
mobile devices have to manage a protocol stack (e.g., GPRS or 3G) with stringent
memory requirements, a dedicated memory manager is the natural choice. A com-
mon approach in the design of such a memory manager is the use of an amount of

Introduction 3

the total memory as a segregated buffer pool which consists of a set of buffers of
different sizes. As a memory request arrives it is scheduled to a free buffer of large
enough size. Memory requests in different time intervals can use the same buffer
which, however, should be of size greater than the largest request allocated to this
buffer. The aim of such a memory manager is to minimize the total size of the
buffers used to service a set of requests and thus the amount of the total memory
which is used as a segregated buffer pool.

The above problem correspond directly to the VC(w) problem, with memory
requests corresponding to the set of vertices of a graph G and their weights to the
size of the memory requests. An edge between two vertices of G exists if the corre-
sponding requests have to be served in overlapping time intervals. So, a partition of
G into independent sets corresponds to an allocation of the requests to buffers, with
each set corresponding to a set of requests that can be allocated to the same buffer.
The weight of a set corresponds to the buffer size which should be at least equal to
the largest memory request in this set. Thus, the total size of the buffers needed to
service a given set of requests is equal to the total weight of the partition of G.

On the other hand, the EC(w) problem arises in single hop communication
systems, like SS/TDMA [35, 46], where messages are to be transmitted directly from
senders to receivers through connections established by an underlying switching net-
work. Any node of such a system cannot participate in more than one transmissions
at the same time, while messages between different pairs of senders and receivers
can be transmitted simultaneously. The scheduler of such a system establishes suc-
cessive configurations of the switching network, each one routing a non-conflicting
subset of the messages from senders to receivers. Given the transmission time of each
message, the transmission time of each configuration equals to the longest message
transmitted. Moreover, in practice, there is a non negligible setup delay to establish
each configuration. The aim is to find a sequence of configurations such that all the
messages are transmitted and the total transmission time (including setup delays)
is minimized.

It is easy to see that the above situation corresponds directly to the EC(w)
problem: senders and/or receivers correspond to the vertices of the graph G, (trans-
mission times of) messages correspond to (weights of) edges of G and configurations
correspond to colors. Although the graph G obtained is originally a weighted di-
rected multi-graph it can be considered as an undirected one, since the directions of
its edges do not play any role in the objective function we study here.

The presence of the setup delay in the instance of the EC(w) problem, can be
easily handled: by adding d to the weight of all edges of G, the weight of each color
class will be also increased by d, incorporating its set up delay. Furthermore, a
standard idea to decrease the completion time of a schedule is to allow preemption
[1, 17, 35], i.e., interrupt the service of a (set of) scheduled activity(ies) and complete
it (them) latter. It is obvious that allowing preemption in the EC(w) problem will
result in increasing the number of colors in a solution. In this case, the presence
of a set up delay d plays a crucial role in the hardness of the (preemptive) EC(w)
problem.

4 Introduction

In all applications mentioned above, context-related entities require their service
by physical resources for a time interval. However, there exists in practice a natural
constraint on the number of entities assigned the same resource or different resources
at the same time. Indeed, the number of memory requests assigned the same buffer
is determined by strict deadlines on their completion times, while the number of
messages assigned at the same time to different channels is bounded by the number
of the available resources. The existence of such a constraint motivates the bounded
max-coloring problems VC(w, b) and EC(w, b).

The VC(b) and VC(w, b) problems are also equivalent with scheduling problems
where jobs correspond to the vertices of a graphG = (V,E), |V | = n, which describes
incompatibilities between them. If all jobs have unit processing times, then the
VC(b) problem is equivalent to the Pb | graph, pj = 1 | Cmax scheduling problem,
where the goal is to minimize the makespan of the schedule of n jobs on b processors
under the constraint that adjacent jobs cannot be scheduled at the same time. This
problem is also known as Mutual Exclusion Scheduling (MES) [4]. If jobs have
different processing times, then the VC(w, b) problem is equivalent to the 1 | p −
batch, graph, b < n | Cmax parallel batch scheduling problem, where the goal is
to minimize the makespan of the batch schedule of n jobs on one machine under
the constraints that adjacent jobs cannot be scheduled at the same batch and each
batch is of cardinality at most b [22, 26].

Analogous scheduling definitions can be given for both the EC(b) and EC(w, b)
problems. For these problems the jobs correspond to the edges of the graph, while
adjacent jobs cannot be scheduled at the same time.

1.3 Organization of the thesis

In this thesis we present complexity and approximation results for the coloring prob-
lems introduced in the previous section, which correspond to scheduling problems
arising in computer and communication systems.

In Chapter 2, we review the known results for the coloring problems, with respect
to the class of the underlying graph.

In Chapter 3, we exploit the relation between our coloring problems and two
other well studied problems, and we give two preliminary results. First we use a
relation with the list coloring problem and we obtain that all VC(w), VC(w, b),
EC(w) and EC(w, b) problems are polynomial on trees, if the number, k, of colors
is fixed. Next, through a transformation to the set cover problem we show an Hb-
approximation algorithm for all VC(b), VC(w, b), EC(b), EC(w, b) problems on
general graphs, if the cardinality bound, b, is fixed. Furthermore, we present two
more observations on the approximability of our coloring problems. The first shows
the existence of an (e ·ρ)-approximation algorithm for any max-coloring problem on
a hereditary class of graphs, where ρ is a known approximation ratio for the corre-
sponding unweighted coloring problem on the same class. The second observation
shows a b/2 approximation ratio for all the bounded coloring problems. We close
this chapter with the notation that we shall use in this thesis.

Introduction 5

In Chapter 4, we deal with the EC(w) problem on general, bipartite and bi-
valued graphs. We first improve the analysis of a well known 2-approximation algo-
rithm presented in [46], and using this analysis we derive even better approximation
ratios for general and bipartite graphs. Next, we present four approximation algo-
rithms for the EC(w) problem on bipartite graphs, each one improving the previous
ones for some values of the maximum degree of the input graph. The first three
algorithms achieve approximation ratios increasing with the maximum degree of the
graph, while the forth one improves the known 2 approximation ratio to 1.74 for
bipartite graphs. Finally, we prove that the EC(w) problem is NP-complete for com-
plete bi-valued graphs and we present an asymptotic 4/3-approximation algorithm
for general bi-valued graphs.

In Chapter 5, we present results for the EC(w) problem on trees. We first
show that the EC(w) problem is polynomial for stars of chains (also known as
spiders). Next, we present a 2-approximation algorithm for trees. Combining this
algorithm and our analysis of the known 2-approximation one [46], we obtain a
3/2 approximation ratio for the EC(w) problem on trees. Next, we propose two
moderately exponential approximation algorithms for trees that improve the 3/2
ratio with running time much better than that needed for the computation of an
optimal solution. More interestingly, we have also finally succeeded to derive a PTAS
for the EC(w) problem on trees.

In Chapter 6, we give complexity and approximation results for the EC(w, b)
problem. We first prove lower and upper bounds to the number of colors of any
solution for the EC(w, b) problem. Using these bounds, we present an approximation
algorithm of ratios 3− 2√

2b
and 3− 2√

b
for general and bipartite graphs, respectively.

Furthermore, we show that the EC(w, b) problem is NP-complete for trees, which
is the first complexity result for any max-coloring problems on trees. For this last
problem we also give a 2-approximation algorithm.

In Chapter 7, we present a 2-approximation algorithm for the VC(w, b) problem
on bipartite graphs. This algorithm reduces to a 4/3-approximation algorithm for
the VC(b) problem on bipartite graphs, closing the approximability question for
this problem. Then, we use this 2-approximation algorithm to obtain a generic
scheme that leads to the following results for the VC(w, b) problem: (i) a 17/11-
approximation algorithm for bipartite graphs, (ii) a PTAS for bipartite graphs, when
b is fixed, and (iii) a PTAS for trees, even if b is part of the problem’s instance.

In Chapter 8 we summarize our results and we discuss questions that remain
still open.

For the reader to have a chart preview of the problems we study and the current
state of the art on their complexity and approximability, we include here Table
1.1, where our results (in bold) are summarized together with known ones that are
reviewed in the next chapter.

P
ro
b
le
m

G
en

er
al

gr
ap

h
s

B
ip
a
rt
it
e
g
ra
p
h
s

T
re
es

L
ow

er
U
p
p
er

L
ow

er
U
p
p
er

L
ow

er
U
p
p
er

B
o
u
n
d

B
ou

n
d

B
o
u
n
d

B
o
u
n
d

B
o
u
n
d

B
o
u
n
d

V
C
(b
)

m
in

{
⌈ b 2

⌉

H
b
(1
)

4/
3
[6
]

4
/
3

O
P
T

[4
2
]

V
C
(w

)
|V

|1−
ε
[5
8]

O
(

|V
|

lo
g
|V

|)
[2
2
]

8
/7

[2
0
,
2
2
,
5
1
]

o
p
en

(2
)

P
T
A
S

[2
5
,
5
1
]

V
C
(w

,b
)

m
in

{
⌈ b 2

⌉

H
b
(1
)

4/
3
[6
]

1
7
/
1
1

o
p
en

(2
)

P
T
A
S

E
C
(b
)

4
/3

[4
1]

4/
3
[2
]

O
P
T

[8
]

O
P
T

[8
]

E
C
(w

)
2
[4
6
]

7/
6
[2
0
]

1
.7
4

o
p
en

(2
)

P
T
A
S

E
C
(w

,b
)

m
in

3
−

2 √
2
b

⌈ b 2

⌉

H
b
(1
)

7/
6
[2
0
]

m
in

e 3
−

2 √
b

⌈ b 2

⌉

H
b
(1
)

N
P
-c
o
m
p
le
te

2

T
ab

le
1.
1:

K
n
ow

n
an

d
ou

rs
(i
n
b
o
ld
)
a
p
p
ro
x
im

a
b
il
it
y
re
su
lt
s
fo
r
b
o
u
n
d
ed

a
n
d
/
o
r
m
a
x
co
lo
ri
n
g
p
ro
b
le
m
s.

(1
) T

h
e
ra
ti
o
H

b
h
o
ld
s
o
n
ly

if
b
is

fi
x
ed

.
(2
) E

ve
n
th
e
co
m
p
le
x
it
y
o
f
th
e
p
ro
b
le
m

is
u
n
k
n
ow

n
.

Chapter 2

Related work

In this chapter we review the known results for the coloring problems introduced in
the previous chapter, with respect to the class of the underlying graph. Although
our results concern general graphs, bipartite graphs and trees, for the sake of com-
pleteness we present here results for several other interesting classes of graphs.

2.1 Vertex/Edge-Coloring

The vertex coloring (or chromatic number) problem on general graphs is one
of Karp’s 21 NP-complete problems [45]. It is also known to be NP-complete on
planar graphs even for three colors [32], although four colors suffice to color any
planar graph (see for example, [54]), as well as on circular arc graphs [31]. On the
other hand, the VC problem can be solved in polynomial time for several other
classes of graphs, including perfect graphs [37], chordal and interval graphs [33],
split graphs, comparability graphs and cographs [34]. For bipartite graphs, trees,
cliques and chains the VC problem is trivially polynomial.

In [58] it is shown that it is NP-hard to approximate the VC problem on general
graphs within a factor of |V |1−ε, for all ε > 0, while an algorithm of approximation

ratio O
(
|V | (log log |V |)2

(log |V |)3
)
has been presented in [38]. For planar graphs, the approx-

imability question for the VC problem is closed, since the NP-completeness proof
[32] and the four color theorem [54] lead to a 4/3 inapproximability result and ap-
proximation algorithm, respectively. Moreover, a 3/2-approximation algorithm has
been proposed in [44] for the VC problem on circular arc graphs.

For the edge coloring (or chromatic index) problem, it is well known that its
optimal solution consists of either ∆ or ∆ + 1 colors [56]. However, it is NP-hard
to decide between these two values even on cubic graphs [41] and on comparabil-
ity graphs [11] (and hence on perfect graphs). The first result implies also a 4/3
inapproximability bound for the problem. On the other hand, the EC problem is
solvable in polynomial time on bipartite graphs [47] (and hence on trees), and cliques
[27].

There are many classes of graphs for which the VC problem is polynomial, while

7

8 Related work

the complexity of the EC problem still remains open. Examples of such classes are
chordal, split and interval graphs and cographs. Moreover, the complexity of the
EC problem is open for planar graphs, while partial results are known for split [12],
interval [7] and planar graphs [55, 57].

As mentioned above, any graph has a (∆+1)-edge-coloring and this coloring can

be found in O
(
min{|V |∆ log |V |, |E|

√
|V | log |V |}

)
time [29]. Using such a (∆+1)-

edge-coloring, a 4/3-approximation algorithm is obtained for the EC problem on
general graphs of ∆ ≥ 3; recall that the EC problem is trivially polynomial for
graphs of maximum degree two.

Table 2.1 summarizes known complexity results for the classical coloring prob-
lems on several well-studied strong classes. Results for more specific classes of graphs
can be found in [43, 49].

Graph Vertex-Coloring Edge-Coloring

general
NP-complete [45] NP-complete [41]
ω ≤ χ ≤ ∆+ 1 χ′ = ∆ or ∆ + 1 [56]

perfect χ = ω [37] NP-complete
chordal χ = ω [33] open

split χ = ω [34] χ′ =
{

∆+ 1, if ∆ is odd [12]
open, if ∆ is even

comparability χ = ω [34] NP-complete [11]
bipartite χ = ω = 2 χ′ = ∆ [47]
trees χ = ω = 2 χ′ = ∆
cograph χ = ω [34] open
chains χ = ω = 2 χ′ = ∆ = 2

circular arc NP-complete [31]

interval χ = ω [33] χ′ =
{

∆, if ∆ is odd [7]
open, if ∆ is even

clique χ = ω = |V | χ′ =
{

∆, if ∆ is odd
∆ + 1, if ∆ is even

[27]

planar
NP-complete [32]

χ′ =
{

∆, for ∆ ≥ 7 [55, 57]
open, otherwiseχ ≤ 4 [54]

Table 2.1: Complexity results for the classical coloring problems.

2.2 Bounded Vertex/Edge-Coloring

The bounded vertex-coloring (or Mutual Exclusion Scheduling [4]) problem is
NP-complete for general, circular arc and planar graphs, as a generalization of the
VC problem. The complexity of the VC(b) problem has been also extensively
studied on special graph classes. It is NP-complete for cographs [6], interval graphs
[6] (and hence for chordal and perfect graphs) and bipartite graphs even for three

Related work 9

colors [6]. This last result implies also a 4/3 inapproximability bound for the VC(b)
problem on bipartite graphs as well as the NP-completeness of the VC(b) problem
on comparability graphs. On the other hand, the VC(b) problem is polynomial for
split graphs [6], trees [42] (and hence for chains) and cliques [19]. Note, finally, that
for the number of colors, k∗, in an optimal solution of the VC(b) problem it holds

that max
{⌈ |V |

b

⌉
, χ

}
≤ k∗ ≤ χ+

⌊ |V |−χ
b

⌋
[40].

Table 2.2 summarizes known complexity results for the VC(b) problem. For
further results the readers referred to [30] and the references therein.

Graph Complexity

general NP-complete(1)

perfect NP-complete
chordal NP-complete
split polynomial [6]
comparability NP-complete
bipartite NP-complete [6]
trees polynomial [42]
cograph NP-complete [6]
chains polynomial

circular arc NP-complete(1)

interval NP-complete [6]
clique polynomial [19]

planar NP-complete(1)

Table 2.2: Complexity results for the bounded vertex-coloring problem. (1)The NP-
completeness comes from the VC problem.

The complexity of the bounded edge-coloring problem is related substantially
to the complexity of the EC problem by the following proposition.

Proposition 1 (de Werra [18]). For any k ≥ ∆, a bipartite multigraph has a de-
composition into k colors such that for all i and j, 1 ≤ i, j ≤ k, it holds that
||Ci| − |Cj || ≤ 1.

The proof of this proposition is based on the fact that the graph which is induced
by the edges of any two colors, Ci and Cj , is a collection of chains and even cycles.
Without loss of generality, assume that |Ci| − |Cj | > 2. Thus, there is at least one
subchain in Ci ∪ Cj whose the number of edges from Ci is greater by one than the
number of edges from Cj . A swap of the edges of Ci and Cj of such a subchain
decreases by one the cardinality of Ci and increases by one the cardinality of Cj .
Therefore, for any k ≥ ∆ we can create by successive swaps a solution of k colors
such that ||Ci| − |Cj || ≤ 1.

Clearly, if we replace the condition k ≥ ∆ by k ≥ χ′ then Proposition 1 holds
also for general graphs. Note also that an optimal solution for the EC(b) problem

10 Related work

consists of at least
⌈ |E|

b

⌉
colors. Thus, if

⌈ |E|
b

⌉
> ∆ then an optimal solution for the

EC(b) problem on general graphs can be found using Proposition 1. Otherwise, the
EC(b) problem is as hard as the EC problem.

Concluding, the EC(b) problem is 4/3-inapproximable on general graphs, while a
4/3-approximation algorithm is obtained by Vizing’s theorem [56] and the discussion
above. On the other hand, the EC(b) problem is polynomial on bipartite graphs
by Proposition 1, a result that has been also proved independently in [8] in matrix
decomposition context. For complexity results for other classes of graphs see the
edge-coloring column of Table 2.2, as well as [43, 49].

Finally, Alon in [2] proved that the EC(b) problem is polynomially solvable on
general graphs if the cardinality bound b is fixed. To prove this, he based on the
fact that “if χ′ = ∆+ 1 then |E| ≥ 1

8

(
3∆2 + 6∆− 1

)
” [28].

2.3 Max-Vertex/Edge-Coloring

Themax-vertex-coloring problem is strongly NP-hard even for (i) bipartite graphs
and edge weights w(e) ∈ {1, 2, 3} [22, 51] (and hence for comparability and perfect
graphs), (ii) split graphs and edge weights w(e) ∈ {1, 2} [22] (and hence for chordal
graphs), (iii) planar bipartite graphs [20], and (iv) interval graphs [25, 52] (and hence
for circular arc graphs).

Moreover, it has been shown that the VC(w) problem on bipartite graphs with
edge weights w(e) ∈ {1, 2, 3} [22, 51] and planar bipartite graphs [20] cannot be
approximated within a ratio less than 8/7. This bound has been attained for gen-
eral bipartite graphs [20, 51], while an O(|V |/ log |V |)-approximation algorithm for
general graphs is known [22]. Although the complexity of the problem on trees is an
open question, a PTAS for this case has been presented in [25, 51]. In addition, a 4-
approximation algorithm has been presented in [52] for perfect graphs; this ratio has
been improved to e in [24], using randomization/derandomization techniques. For

k-colorable graphs, an approximation algorithm of ratio k3

3k2−3k+1
has been proposed

in [25], leading to a 64/37-approximation algorithm for planar graphs. In addition,
approximation algorithms of ratio 2 and 3 for interval and circular arc graphs, re-
spectively, have been presented in [52], exploiting the relation between the VC(w)
problem and online coloring. Furthermore, a PTAS for split graphs is known [20].

Moreover, the VC(w) problem is known to be polynomial on bipartite graphs
and edge weights w(e) ∈ {1, 2} [22], cographs [22], and chains [25]. In fact, the
algorithm for chains can be also extended for graphs of ∆ = 2. Finally, a new
algorithm for the VC(w) problem on chains which improves the complexity for this
case from O(|V |2) to O(|V | · log |V |) has been presented in [39].

Table 2.3 summarizes the above results for the VC(w) problem. Several results
for even more restricted classes of graphs can be found in [20].

The max-edge-coloring problem is strongly NP-hard even for (i) complete
balanced bipartite graphs [53], (ii) bipartite graphs of maximum degree three and
edge weights w(e) ∈ {1, 2, 3} [35, 46], (iii) cubic bipartite graphs [22], and (iv)

Related work 11

Graph Lower Bound Upper Bound

general |V |1−ε(1) O
(|V |
log |V |

)
[22]

perfect 8/7 e [24]

chordal NP-complete e

split NP-complete [22] PTAS [20]

comparability 8/7 e

bipartite 8/7 [20, 22, 51]

bipartite, w ∈ {a, b} OPT [22]

trees open(2) PTAS [25, 51]

cograph OPT [22]

chains OPT [25, 39]

circular arc NP-complete 3 [52]

interval NP-complete [25, 52] 2 [52]

clique OPT

planar 4/3(1) 64/37 [25]

Table 2.3: Known approximability results for the max-vertex-coloring problem.
(1)This result comes from the VC problem. (2)Even the complexity of the prob-
lem is unknown.

cubic planar bipartite graphs with edge weights w(e) ∈ {1, 2, 3} [20]. Moreover, it
has been shown that the EC(w) problem on r-regular bipartite graphs cannot be
approximated within a ratio less than 2r

2r−1 , which for r = 3 becomes 8/7 [22]. This
inapproximability result has been improved to 7/6 for cubic planar bipartite graphs
[20].

On the other hand, a simple greedy 2-approximation algorithm has been pre-
sented in [46] for bipartite graphs (in fact, the same algorithm applies also for gen-
eral graphs). In addition, a 2∆−1

3 -approximation algorithm, for bipartite graphs of
maximum degree ∆, has been presented in [22], which gives an approximation ra-
tio of 5/3 for ∆ = 3. A new algorithm for bipartite graphs with ∆ = 3 has been
presented in [20]; it achieves an approximation ratio of 7/6 which attains, for this
case, the known 7/6 inapproximability bound. Finally, an algorithm that achieves

approximation ratio ρ∆ =
∆∑∆

i=1

∏∆−1
j=i (1− ρj

∆)
, for graphs of maximum degree ∆

has been proposed in [25]. This ratio is smaller than 2 only for bipartite graphs of
maximum degree ∆ ≤ 7.

Moreover, the EC(w) problem is known to be polynomial for a few very special
cases including complete balanced bipartite graphs and edge weights w(e) ∈ {1, 2}
[53], general bipartite graphs and edge weights w(e) ∈ {1, 2} [22], and chains [25].
In fact, the last result was presented for the VC(w) problem, and holds also for the
EC(w) problem, since chains are closed under the linegraph transformation.

Finally, the preemptive-EC(w) problem, without setup delays, for bipartite

12 Related work

graphs is equivalent to the preemptive open shop scheduling problem which can
be solved optimally in polynomial time [48]. However, with the presence of a setup
delay, d, required to establish each color, the preemptive-EC problem on bipartite
graphs becomes strongly NP-hard [35] and non approximable within a factor less
than 7/6 [17]. Approximation algorithms for this problem of factors 2 and 2− 1

d+1
have been presented in [17] and [1], respectively.

2.4 Bounded Max-Vertex/Edge-Coloring

Clearly, any negative result for the VC(b)/VC(w) and EC(b)/EC(w) problems
holds also for the VC(w, b) and EC(w, b) problems, respectively.

Known results for the VC(w, b) problem have appeared in the context of batch
scheduling jobs with compatibilities (see e.g. [26]). In this problem the goal is
to decompose the graph into a set of cliques (instead of colors/independent-sets).
Thus, results for this problem on special graph classes lead to analogous results for
the VC(w, b) problem on the complements of these classes. An interesting result
that has been shown in this context is that the VC(w, b) problem is NP-complete
for split graphs and b = 3 [9], since the complement of a split graph remains in the
same class.

Furthermore, a polynomial algorithm for general graphs and b = 2 has been
presented for the scheduling problem with compatibilities [10]. This algorithm can
be used to obtain an analogous result for both VC(w, b) and EC(w, b) problems
on general graphs, since general graphs are closed under complement and linegraph
operations.

Finally, a 8/3-approximation algorithm is known for the preemptive-EC(w, b)
problem on bipartite graphs [15].

Chapter 3

Preliminaries and Notation

In this chapter we first relate our coloring problems with two well studied problems,
namely list coloring and set cover. Using these relations we obtain preliminary
results for the (bounded) max-coloring problems when either the number, k, of
colors or the cardinality bound, b, are fixed.

Next, we present two preliminary approximation results for the bounded max-
coloring problems. The first one follows from a known general framework, which
allows to convert a ρ-approximation algorithm for a coloring problem to an e · ρ-
approximation one for the corresponding max-coloring problem. The second ap-
proximation result follows by using a solution to a bounded coloring problem with
cardinality bound b = 2 to approximate a solution for an arbitrary bound b.

We close this chapter by the notation that we shall use throughout this thesis.

3.1 Preliminaries

List coloring and fixed number of colors

In several algorithms that we shall present in the next chapters, the following decision
problem has to be answered (we present here the bounded vertex version of this
problem; unbounded and/or edge versions are defined similarly):

Feasible-VC(w, b)
Instance: A vertex weighted graph G = (V,E), a sequence of k weights, w1 ≥
w2 ≥ . . . ≥ wk, and an integer b.
Question: Is there a a feasible solution C = {C1, C2, . . . , Ck} to the VC(w, b)
problem on G such that maxv∈Ci w(v) ≤ wi and |Ci| ≤ b, 1 ≤ i ≤ k?

The Feasible-VC(w, b) problem is equivalent to the next well known variant
of the vertex-coloring problem:

13

14 Preliminaries

Bounded List Vertex-Coloring problem (VC(φ, bi))
Instance: A graph G = (V,E), a set of colors C = {C1, C2, . . . , Ck}, a list of colors
φ(u) ⊆ C for each u ∈ V , and integers bi, 1 ≤ i ≤ k.
Question: Is there a k-coloring of G such that each vertex u is assigned a color in
its list φ(u) and every color Ci is used at most bi times?

Indeed, an instance of the Feasible-VC(w, b) problem on a graph G, where we
are given k weights w1 ≥ w2 ≥ . . . ≥ wk and an integer b, can be easily transformed
to the next equivalent instance of the VC(φ, bi) problem: is there a k-coloring of G
where each vertex u ∈ V is assigned a color in φ(u) = {Ci : wi ≥ w(u), 1 ≤ i ≤ k}
and every color Ci is used at most bi = b times? A “yes” answer to this instance
of the VC(φ, bi) problem corresponds to the existence of a feasible solution C =
{C1, C2, . . . , Ck} for the VC(w, b) problem of weight W =

∑k
i=1wi.

In an analogous way, we can use the List Vertex-Coloring (VC(φ)), Bounded List
Edge-Coloring (EC(φ, bi)) and List Edge-Coloring (EC(φ)) problems to answer to
the Feasible-VC(w), Feasible-EC(w, b) and Feasible-EC(w) problems, respec-
tively.

Clearly, the (bounded) list vertex and edge coloring problems generalize the
(bounded) vertex and edge coloring problems. List coloring problems have been
studied extensively in the literature, for many classes of underlying graphs. In the
next theorem we summarize some of these results which we shall use in this thesis.

Theorem 1.

(i) Both VC(φ, bi) and EC(φ, bi) problems are polynomial on trees if the number,
k, of colors is fixed [21, 36].

(ii) The VC(φ, bi) problem is polynomial on general graphs if k = 2 [36].

(iii) The VC(φ, bi) problem is NP-complete even for chains, |φ(u)| ≤ 2, for all
u ∈ V , and bi ≤ 5, 1 ≤ i ≤ k [23].

By exhaustively searching for the weights of an optimal solution of k colors for
a max-coloring problem, and answering to the obtained feasible coloring problem
through the corresponding list coloring problem, we get the following theorem.

Theorem 2.

(i) For a fixed number of colors k, both VC(w, b) and EC(w, b) problems, and
hence VC(w) and EC(w) problems, are polynomial on trees.

(ii) For two colors, the VC(w, b) problem is polynomial on general graphs.

Proof. For (i), we consider all O(|V |k) (resp. O(|E|k)) combinations of k color
weights and for each combination, w1, w2, . . . , wk, we have to answer to the Feasible-
VC(w, b) (resp. Feasible-EC(w, b)) problem. This can be done using the relation
to the VC(φ, bi) (resp. EC(φ, bi)) problem described above and the results of The-
orem 1(i). An optimal solution to the VC(w, b) (resp. EC(w, b)) problem corre-
sponds to the combination where a feasible solution exists and the total weight W
is minimized.

Preliminaries 15

In a similar way, we can prove (ii), using Theorem 1(ii).

Set cover and fixed cardinality bounds

The VC(w, b) and EC(w, b) problems are also related to the well known set cover
problem, where we are given a universe U of elements, and a collection, S =
{S1, S2, . . . , Sm}, of subsets of U , each one of a positive cost ci, 1 ≤ i ≤ m, and
we ask for a minimum cost subset of S that covers all elements of U .

For an instance of the VC(w, b) problem on a graph G = (V,E), let U = V and
consider S consisting of all the subsets of V , but those containing adjacent vertices, of
cardinalities j = 1, 2, . . . , b; for each such subset Si ∈ S set ci = max{w(u)|u ∈ Si}.
Clearly, a solution to the set cover problem constructed corresponds to a solution of
the VC(w, b) problem and a quite analogous transformation applies for the EC(w, b)
problem. The cardinality of S is O(b · |V |b), and as an Hb-approximation algorithm
is known for the set cover problem [14], the next theorem follows.

Theorem 3. For a fixed bound b, there is an Hb-approximation algorithm for both
VC(w, b) and EC(w, b) problems on general graphs.

Max-coloring vs Coloring problems

In [24], a general framework has been presented, which allows us to convert any
ρ-approximation algorithm for the classical vertex coloring problem into an e · ρ-
approximation one for the VC(w) problem, on hereditary classes of graphs. The
main idea of this framework is to select, in a random way, two parameters in order to
round down the weight of each vertex. Hence, we can consider the input graph par-
titioned into subgraphs, where the vertices in each subgraph have the same weight.
For each one of these subgraphs a ρ-approximation solution for the classical VC
problem is obtained, and by concatenating the solutions found for all subgraphs
we get a solution for the whole graph. Finally, this procedure is derandomized
by choosing appropriate values for the two random parameters and a deterministic
approximation algorithm is obtained.

This framework is used in [24] to derive an e-approximation algorithm for the
VC(w, b) problem on perfect graphs. It is easy to see that it can be also applied
for conversions from the VC(b), EC and EC(b) problems to the VC(w, b), EC(w)
and EC(w, b) problems, respectively. For example, an e-approximation algorithm
for the EC(w, b) problem on bipartite graphs is obtained using such a conversion,
as the EC(b) problem is polynomial for bipartite graphs. However, this framework
does not give an improvement to the approximation ratio of any other (bounded)
max-coloring problem on the classes of graphs we study in this thesis, because a
better ratio either is known or is presented in the next chapters.

Theorem 4. There is an e-approximation algorithm for the EC(w, b) problem on
bipartite graphs.

16 Notation

Arbitrary b vs b = 2

Another approximation result for both VC(w, b) and EC(w, b) problems on gen-
eral graphs can be obtained by relating the values OPTb and OPT2 of the optimal
solution when the bound is b and 2, respectively. Let W be the weight of solu-
tion obtained by splitting each color in OPTb into

⌈
b
2

⌉
colors, all of cardinality

at most 2. Obviously, W ≤ ⌈
b
2

⌉
OPTb. Moreover, OPT2 is the optimal solution

when all colors have cardinality at most 2, and hence OPT2 ≤ W . Thus, we have
OPT2 ≤

⌈
b
2

⌉
OPTb, and since both VC(w, b) and EC(w, b) problems are polynomial

for general graphs and b = 2 [10], the following theorem follows.

Theorem 5. There is a
⌈
b
2

⌉
-approximation algorithm for both VC(w, b) and EC(w, b)

problems on general graphs.

3.2 Notation

In the following, we consider the coloring problems defined in Chapter 1 on a graph
G = (V,E), where |V | = n and |E| = m. For the (bounded) max-vertex-coloring
(resp. (bounded) max-edge-coloring) problem, a positive integer weight w(u) (resp.
w(e)) is associated with each vertex u ∈ V (resp. edge e ∈ E). For the bounded
vertex/edge-coloring problems, we are also given a cardinality bound, b, on the
number of vertices/edges allowed to appear in each color.

We denote by C = {C1, C2, . . . , Ck} a proper vertex- (resp. edge-) coloring of G
of weight W =

∑k
i=1wi, where wi = max{w(u)|u ∈ Ci} (resp. wi = max{w(e)|e ∈

Ci}), 1 ≤ i ≤ k. By C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
k∗} we denote an optimal solution of weight

OPT =
∑k∗

i=1w
∗
i , where w∗

i , 1 ≤ i ≤ k∗, is the weight of the i-th color class.

By dG(u) (or simply d(u)) we denote the degree of vertex u ∈ V and by ∆(G)
(or simply ∆) the maximum degree of the graph G. We define the degree of each
edge e = (u, v) ∈ E as d(u, v) = d(u)+d(v), while ∆′(G) (or simply ∆′) denotes the
maximum edge degree. For a subset of edges of G, E′ ⊆ E, we denote by G[E′] the
subgraph of G induced by the edges in E′.

The following ordering and partition of the elements of a set accordingly to
their weights will be used to present and analyze most of our algorithms. Given
a set S and a positive integer weight w(s) for every element s ∈ S, we denote by
〈S〉 = 〈s1, s2, . . . , s|S|〉 an ordering of S such that w(s1) ≥ w(s2) ≥ . . . ≥ w(s|S|).

For such an ordering of S and a positive integer b, let kS =
⌈ |S|

b

⌉
. We define the

ordered b-partition of S, denoted by PS = {S1, S2, . . . , SkS}, to be the partition
of S into kS subsets, such that Si = {sj , sj+1, . . . , smin{j+b−1,|S|}}, i = 1, 2, . . . , kS ,
j = (i − 1)b + 1. In other words, S1 contains the b heaviest elements of S, S2

contains the next b heaviest elements of S and so on; clearly, SkS contains the |S|
mod b lightest elements of S.

Chapter 4

Max-Edge-Coloring on general
and bipartite graphs

In this chapter we present approximation results for the EC(w) problem on general
and, mainly, on bipartite graphs. We, first, slightly improve the ratio of the known
2-approximation algorithm proposed by Kesselman and Kogan in [46] (Algorithm
KK). Our analysis of this algorithm is based on lower and upper bounds on the
number of colors of any reasonable solution to the EC(w) problem. Next, we give
a simple algorithm that returns the best among two solutions: the solution found
by Algorithm KK and the one obtained by an edge-coloring of the input graph.
The ratio of this simple algorithm already beats the known ratios for general and
bipartite graphs.

Next, we explore an idea used in [20, 25] to derive approximation ratios less than
2 for the EC(w) problem on bipartite graphs of ∆ ≤ 7. The same ideas has been also
used in [20, 51] to derive an 8/7-approximation algorithm for the VC(w) problem
for bipartite graphs. In general, we find a number of solutions for a bipartite graph
G by concatenating partial solutions for disjoint edge induced subgraphs of G and
we select the best among them. Using this idea we present a series of four algorithms
of different approximation ratios for the EC(w) problem on bipartite graphs. The
approximation ratios of our three first algorithms depend on the maximum degree
of the input graph. The last of our algorithms achieves an 1.74 approximation ratio
for this problem and it is the first one that improves the known ratio of 2.

Finally, in Section 4.4 we prove that the EC(w) problem is NP-complete even on
bi-valued complete graphs. Moreover, we present an asymptotic 4/3-approximation
algorithm for general bi-valued graphs.

4.1 Preliminaries

The EC(w) problem is polynomial for graphs of maximum degree ∆ = 2. This
result follows from the same variant of the VC(w) problem. In fact, an O(|V |2)
algorithm for the VC(w) problem on chains has been presented in [25], which can
be easily adapted to graphs of maximum degree ∆ = 2 (that are collections of chains

17

18 Max-Edge-Coloring

and cycles). If G is a graph of maximum degree ∆(G) = 2, then its line graph L(G)
is also a graph with ∆(L(G)) = 2 and the following theorem holds.

Theorem 6. An optimal solution to the EC(w) problem for graphs of maximum
degree ∆ = 2 can be found in O(|E|2) time.

To bound the number of colors in any solution to the EC(w) problem we can restrict
only on a specific subset of them. We shall call a solution C = {C1, C2, . . . , Ck} to the
EC(w) problem nice if: (i) w1 ≥ w2 ≥ . . . ≥ wk, and (ii) each color Ci is maximal
in the subgraph G[

⋃k
j=iCj]. Due to the next proposition we consider, w.l.o.g., any,

suboptimal or optimal, solution to the EC(w) problem to be a nice one.

Proposition 2. Any solution to the EC(w) problem can be transformed into a nice
one, without increasing its total weight. For the number of colors, k, in such a
solution it holds that ∆ ≤ k ≤ ∆′ − 1 ≤ 2∆− 1.

Proof. Obviously, any solution to the EC(w) problem consists of at least ∆ colors,
since there is at least one vertex with exactly ∆ adjacent edges, and these ∆ edges
belong to different colors.

Assume that an optimal solution consists of ∆′ or more colors. Consider those
colors sorted in non-increasing order of their weights. Each edge of G has at most
∆′ − 2 neighbor edges. So, for each edge e in any color Ci, i ≥ ∆′, there is at least
one color, Cj , j < ∆′, such that edge e can be moved to Cj without increasing Cj ’s
weight.

The last part of the inequality follows directly by the definition of ∆′.

The most interesting and general result for the EC(w) problem is due to Kesselman
and Kogan [46] who proposed the following greedy algorithm:

Algorithm KK

1: Let 〈E〉 = 〈e1, e2, . . . , em〉;
2: for i = 1 to m do
3: Insert ei into the first color not containing other edges adjacent to ei;
4: end for

In [46], it has been shown that Algorithm KK is a 2-approximation one and an
example has been presented yielding an approximation ratio of 2− 1

∆ . By a slightly
tighter analysis using Proposition 2 we prove here the next lemma.

Lemma 1. Algorithm KK achieves an approximation ratio of min{2 − w∗
1

OPT ,
2− 1

∆} for the EC(w) problem.

Proof. The solution, C = {C1, C2, . . . , Ck}, that Algorithm KK returns is, by its
construction, a nice one. Let e be the first edge that the algorithm inserts into
color Ci; then it holds that wi = w(e). Let Ei be the set of edges preceding e in
〈E〉 and edge e itself, i.e., Ei = {e1, e2, . . . , ei−1}, and ∆i be the maximum degree

Preliminaries 19

of the subgraph G[Ei]. The optimal solution for the EC(w) problem on the graph
G[Ei] contains i∗ ≥ ∆i colors each one of weight at least wi, that is wi ≤ w∗

i∗ . By
Proposition 2, the colors constructed by Algorithm KK for the graph G[Ei] are
i ≤ 2∆i − 1 ≤ 2i∗ − 1, that is i∗ ≥ d i+1

2 e. Hence, wi ≤ w∗
i∗ ≤ w∗

d i+1
2

e.
Summing up the above bounds for all wi’s, 1 ≤ i ≤ k ≤ 2∆ − 1, we obtain

W ≤
2∆−1∑

i=1

wi ≤ w∗
1 + 2

(
∆∑

i=2

w∗
i

)
= 2

(
∆∑

i=1

w∗
i

)
− w∗

1. As k∗ ≥ ∆, it follows that

∆∑

i=1

w∗
i ≤ OPT . Therefore,

W

OPT
≤ 2− w∗

1

OPT
and also

W

OPT
≤ 2

∑∆
i=1w

∗
i − w∗

1∑∆
i=1w

∗
i

≤

2− w∗
1∑∆

i=1w
∗
i

≤ 2− w∗
1

∆ · w∗
1

= 2− 1

∆
.

It is well known that a (∆ + 1)-coloring of a general graph and a ∆-coloring of a
bipartite graph can be found in polynomial time. In fact, a (∆ + 1)-coloring of

a general graph can be found in O
(
min{|V |∆log |V |, |E|

√
|V | log |V |}

)
time [29],

while a ∆-coloring of a bipartite graph in O (|E| log∆) time [16]. Such a coloring
yields a feasible, but in general not optimal, solution for the EC(w) problem.

Intuitively, a solution obtained this way will be close to an optimal one when the
edge weights are close to each other, while Algorithm KK performs better in the
opposite case. Next theorem follows by selecting the best among the two solutions
found by Algorithm KK and a (∆ + 1)− or ∆-coloring of the input graph.

Theorem 7. There is an approximation algorithm for the EC(w) problem of ratio

2− 2

∆ + 2
for general graphs and 2− 2

∆ + 1
for bipartite graphs.

Proof. By Lemma 1, a solution found by Algorithm KK is of weightW ≤ 2OPT−
w∗
1. Any ∆-coloring of a bipartite graph yields a solution for the EC(w) problem of

weight W ≤ ∆ ·w∗
1, since w∗

1 equals to the weight of the heaviest edge of the graph,
and hence to the weight of the heaviest color of any solution created for this graph.
Multiplying both sides of the second inequality with 1/∆ and adding this to the first

one we obtain:

(
1 +

1

∆

)
W ≤ 2OPT , that is W ≤

(
2− 2

∆ + 1

)
OPT .

For general graphs we simply consider a (∆+1)-coloring, instead of a ∆-coloring,
of the input graph.

For the tightness of our analysis for bipartite graphs, consider the instance of
the EC(w) problem shown in Figure 4.1(a). The weight of an optimal solution to
this instance is 2 + ε (Figure 4.1(b)), the weight of the solution of Algorithm
KK is 3 (Figure 4.1(c)), and the weight of a solution found by a ∆-coloring of
the input graph (Figure 4.1(d)) is also 3. By selecting either solution a ratio of
3

2 + ε
' 3

2
= 2− 2

∆ + 1
is attained.

20 Max-Edge-Coloring

1 − ε 1 − εε

11 1ε 1 ε

(a) (b)

1

1 − ε

C∗

1

1
1

1 − ε

C∗

2
C∗

3

ε

ε

ε

(d)

1 − ε

C1 C2 C3

ε

ε

ε

1 − ε

(c)

C1 C2 C3

ε

ε

ε

1 − ε

1 − ε

C4

1
1
1
1

1 1 1 1
1

Figure 4.1: A tight example for the
(
2− 2

∆+1

)
-approximation ratio of Theorem 7

for bipartite graphs (∆ = 3, ε << 1).

Figure 4.2(a) shows an analogous example for the approximation ratio of Theo-
rem 7 for general graphs. The solution created by Algorithm KK (Figure 4.2(c))
has weight 4− 3ε, while the solution obtained by a (∆+ 1)-coloring (Figure 4.2(d))

has weight 4. By selecting the first solution a ratio of
4− 3ε

5
2

' 8

5
= 2 − 2

∆ + 2
is

attained, since the optimal solution (Figure 4.2(b)) has weight 5/2.

3

4
− ε

1 1

(a) (b)

1

1

1

C∗

1
C∗

2
C∗

3

(d)

1

C1 C2 C3

(c)

C1 C2 C3 C4

1 1
3

4
− ε

3

4
− ε

3

4

3

4

3

4

3

4
− ε

3

4
− ε

3

4

1

3

4

3

4

3

4
− ε

3

4
− ε

3

4

3

4

3

4
− ε

1

1

1

1

3

4
− ε

3

4
− ε

3

4

3

4

3

4

3

4

3

4
− ε

3

4
− ε

3

4
− ε

3

4
− ε

3

4
− ε

C5

1 1 1

C4

3

4

3

4
− ε

3

4
− ε

3

4

3

4
− ε

3

4

3

4

3

4
− ε

3

4
− ε

Figure 4.2: A tight example for the
(
2− 2

∆+2

)
-approximation ratio of Theorem 7

for general graphs (∆ = 3, ε << 1).

The ratios of Theorem 7 are better than 2− 1

∆
for any ∆ ≥ 3. More interestingly,

the ratios for bipartite graphs are better than the (2∆ − 1)/3 approximation ratio
proposed in [22], for any ∆, as well as than the ratios of the algorithm presented in
[25], for ∆ ≥ 4.

4.2 f(∆)-approximation algorithms for bipartite graphs

The known approximation algorithms [20, 25] of ratios less than 2 for the EC(w)
problem on a bipartite graph G = (V,E) are based on the following general idea:
Consider an ordering 〈E〉 = 〈e1, e2, . . . , em〉 of the edges of G, and let Ep,q =
{ep, ep+1, . . . , eq}. Repeatedly, partition the graph G into three edge induced sub-
graphs: the graph G[E1,p] induced by the p heaviest edges of G, the graph G[Ep+1,q],
induced by the next q − p edges of G, and the graph G[Eq+1,m], induced by the
m− q lightest edges of G. Find a solution for the whole graph G by considering the
EC(w) problem on these three subgraphs and return the best among the solutions

Bipartite graphs 21

found. Depending on how the problem is handled for each subgraph and the analysis
followed, this general idea leads to different algorithms and approximation ratios.
Notice that the same approach is employed by the 8/7-approximation algorithm for
the VC(w) problem on bipartite graphs [20, 51].

In this section we further explore this idea, and we present a series of three
f(∆)-approximation algorithms, each one improving the ratios of the previous ones.
Our first algorithm gives approximation ratios better than the previous known for
bipartite graphs of maximum degree 4 ≤ ∆ ≤ 12, but its ratio becomes greater than
2 for ∆ ≥ 13. The approximation ratios of our second and third algorithms are
smaller than 2 for any ∆. Our third algorithm achieves the best ratios for bipartite
graphs of maximum degree ∆ ≥ 7. However, both these algorithms give ratios that
tend asymptotically to 2 as ∆ increases.

To describe our algorithms, let us introduce some additional notation. We denote
by (p, q), 0 ≤ p < q ≤ m, a partition of G into subgraphs G[E1,p], G[Ep+1,q] and
G[Eq+1,m]; by convention, we define E1,0 = ∅, Em+1,m = ∅ and E0,q = E1,q. By ∆p,q

we denote the maximum degree of the subgraph G[Ep,q], and by dp,q(u) the degree
of u ∈ V in G[Ep,q]. We denote by pδ the maximum index such that ∆1,pδ = δ. It
is clear that p1 < p2 < . . . < p∆ = m.

Finally, henceforth in this section, the following proposition will be useful.

Proposition 3. Given a graph G = (V,E) and a subset A ⊆ V , we can determine
if there is a matching M in G saturating all vertices in A in O(|V |2.5) time.

Proof. Consider the graph G′ = (X,Y) constructed by adding to G an additional
vertex, if |V | is odd, and all the missing edges between the vertices X −A (i.e., the
vertices X −A induce a clique in G′). If there exists a perfect matching in G′, then
there exists a matching in G saturating all vertices in A, since no edges adjacent to
A have been added in G′.

Conversely, if there exists a matching M in G saturating all vertices in A, then
there exists a perfect matching in G′, consisting of the edges of M plus the edges of
a perfect matching in the complete subgraph of G′ induced by its vertices that are
not saturated by M .

Therefore, in order to determine if there exists a matching M in G it is enough
to check if there exists a perfect matching in G′. It is well known that this last check
can be done in O(|V |2.5) time [50].

Bipartite graphs of small maximum degree

In this section, we present a first approximation algorithm for the EC(w) problem
on bipartite graphs, exploiting the idea of splitting the input bipartite graph into
edge induced subgraphs. In fact, our algorithm generalizes the 7/6-approximation
algorithm for bipartite graphs of ∆ = 3, proposed in [20], such that: (a) it remains
polynomial for general bipartite graphs, and (b) it achieves a substantial improve-
ment of the best known approximation ratios for the EC(w) problem on bipartite
graphs of maximum degree 4 ≤ ∆ ≤ 12.

22 Max-Edge-Coloring

In general, for each partition (p, q), p = 1, 2, . . . , p∆−1, q = p+ 1, . . . ,m, our al-
gorithm checks the existence of two different specific sets of edges in graph G[Ep+1,q]
and for each one of them, if there exist, it computes a solution to the EC(w) problem
on graph G. The algorithm returns the best among all the solutions found.

Algorithm Bipartite-1(G)

1: for p = 1 to p∆−1 do
2: for q = p+ 1 to m do
3: if there is a matching M in G[Ep+1,q] saturating all vertices of G[E1,q] with

degree ∆ then
4: Create a solution for G[E1,q] by concatenating a (∆−1)-coloring solution

for G[E1,q \M] and the matching M ;
5: Complete greedily this solution with the edges in Eq+1,m;
6: end if
7: if p ≤ p2 then
8: Find an optimal solution C1,p for G[E1,p] by Theorem 6;
9: else

10: Find a solution C1,p for G[E1,p] by Algorithm Bipartite-1(G[E1,p]);
11: end if
12: if there is a set of edges E′ in G[Ep+1,q] saturating any vertex of G[Ep+1,q]

with degree ∆ and E′ fits in C1,p then
13: Find a (∆− 1)-coloring solution Cp+1,q for G[Ep+1,q \E′];
14: Concatenate C1,p and Cp+1,q and complete greedily this solution with the

edges of G[Eq+1,m];
15: end if
16: end for
17: end for
18: Return the best among the solutions found in Lines 5 and 14;

In Line 3 the algorithm checks the existence of a matching M in G[Ep+1,q]
saturating all vertices of degree ∆ in G[E1,q]. It holds that ∆1,p ≤ ∆ − 1, since
1 ≤ p ≤ p∆−1, and therefore the vertices of degree ∆ in subgraphs G[E1,q] and
G[Ep+1,q] are the same. Hence, the existence of M can be checked by applying
Proposition 3 on the graph G[Ep+1,q] with A being the set of vertices of degree ∆
in G[E1,q].

In Line 12 the algorithm checks the existence of a set of edges E′ in G[Ep+1,q]
saturating all vertices of degree ∆ in G[Ep+1,q] and, moreover, fitting the solution
C1,p. Consider the subgraphH ofG[Ep+1,q] induced by its vertices of degree d1,p(u) ≤
∆1,p − 1. Note that, by construction, each edge in H fits in a color of the solution
C1,p. Let A be the subset of vertices of H of degree dp+1,q(u) = ∆, i.e. the set
of vertices which we want to saturate, and B the subset of vertices in A of degree
dH(u) = 1. For each vertex u ∈ B we can clearly insert the single edge (u, v) in E′.
Let H ′ be the subgraph of H induced by its vertices but those in B and A′ ⊆ A
be the subset of vertices of A that are not saturated by the edges already in E′.
It is now enough to find a matching on H ′ that saturates each vertex in A′, using

Bipartite graphs 23

Proposition 3. Adding the edges of this matching in E′ we get a set that saturates
each vertex of degree ∆ in graph G[Ep+1,q].

In Lines 5 and 14 the algorithm completes a partial solution by examining the
remaining lightest edges one by one and assigning them to the first color they fit in.
If such a color does not exist, then a new one is created. As both partial solutions
consist of at most 2∆− 1 colors, the complete solutions obtained will consist also of
at most 2∆− 1 colors, according to the arguments in the proof of Proposition 2.

The following lemma provides bounds to the weight W of the solution obtained
by Algorithm Bipartite-1. We denote by %∆ the approximation ratio of our
algorithm for a graph of maximum degree ∆. By definition, %1 = %2 = 1, since, by
Theorem 6, the EC(w) problem for graphs of maximum degree 1 or 2 can be solved
in polynomial time. Recall also that we consider the colors of an optimal solution
in non-increasing order with respect to their weights, i.e., w∗

1 ≥ w∗
2 ≥ · · · ≥ w∗

k∗ .

Lemma 2. Algorithm Bipartite-1 returns a solution of weight:

W ≤ min
{
(∆− 1) · w∗

1 + w∗
∆ + (∆− 1) · w∗

∆+1,

min
1≤δ≤∆−1

{
%δ ·

δ∑

i=1

w∗
i + (∆− 1) · w∗

δ+1 + (∆− δ) · w∗
∆+δ

}}

Proof. For the first term in the righthand side of the lemma’s inequality, we consider
the solution obtained in Lines 3 to 6 of Algorithm Bipartite-1(G) in the iteration
(p, q) where w(ep+1) = w∗

∆ and w(eq+1) = w∗
∆+1 (note that if q = m, then k∗ = ∆

and w∗
i = 0, for each i ≥ ∆ + 1). In this iteration the matching M exists, since

in the optimal solution the edges in E1,q belong to at most ∆ colors and the ∆-th
color contains edges of weight at most w(ep+1). The weight of M is at most w∗

∆,
while the weight of the solution found for G[E1,q \M] is bounded by (∆ − 1) · w∗

1.
The greedy step in Line 5 creates at most ∆− 1 colors, each one of weight at most
w∗
∆+1. Therefore, W ≤ (∆− 1) · w∗

1 + w∗
∆ + (∆− 1) · w∗

∆+1.
For the second term in the righthand side of the lemma’s inequality, consider

the solutions obtained in Lines 7 to 15 of Algorithm Bipartite-1(G) for ∆ − 1
different iterations (p, q). For p ≤ pδ, consider the iteration q where w(ep+1) = w∗

δ+1

and w(eq+1) = w∗
∆+δ. In this iteration, the set of edges E′ exists, since in the optimal

solution the edges in Ep+1,q belong to at most ∆− 1 colors.
If δ = 1 or 2, the algorithm creates an optimal solution for G[E1,p] using Theorem

6, since ∆1,p ≤ 2.
If q ≥ 3, the algorithm creates an approximation solution for G[E1,p].
In both cases, the edges in E1,p are a subset of the edges of the δ heaviest colors

in the optimal solution. Thus, it holds that C1,p ≤ %δ ·
∑δ

i=1w
∗
i , where %1 = %2 = 1.

The weight of the solution found for G[Ep+1,q \E′] is bounded by (∆− 1) ·w∗
δ+1,

since ∆ (G[Ep+1,q \ E′]) ≤ ∆ − 1 and for each edge e ∈ Ep+1,q \ E′ it holds that
w(e) ≤ w∗

δ+1.
The greedy step in Line 14 creates at most ∆− δ colors, each one of weight at

most w∗
∆+δ.

Summing up the weights of these three partial solutions the lemma follows.

24 Max-Edge-Coloring

Algorithm Bipartite-1(G) performs O(|E|2) iterations. In Line 10 of (some
of) those iterations the algorithm is called recursively for the graph G[E1,p]. In this
call, for each combination of p′, q′, 1 ≤ p′ < q′ ≤ p, the graph G1,p is partitioned
into the three edge induced subgraphs G1,p′ , Gp′+1,q′ and Gq′+1,p.

The solution for G[E1,p′] has been already computed in a previous iteration of
Algorithm Bipartite-1(G) in which p = p′. By storing this solution we avoid
its recursive recomputation. Thus, Algorithm Bipartite-1(G[E1,p]) performs in
total also O(|E|2) iterations. By Proposition 3, the matching M and the set E′ can
be computed in polynomial time, and this derives a polynomial overall complexity.

To obtain the ratio of Algorithm Bipartite-1 we consider the ∆ bounds on
W and we combine them in an optimal way. For instance, for ∆ = 4, Algorithm
Bipartite-1 returns a solution of weight W , for which holds that:

W ≤ 3 · w∗
1 + w∗

4 + 3 · w∗
5

W ≤ w∗
1 + 3 · w∗

2 + 3 · w∗
5

W ≤ w∗
1 + w∗

2 + 3 · w∗
3 + 2 · w∗

6

W ≤ 7/6 · (w∗
1 + w∗

2 + w∗
3) + 3 · w∗

4 + w∗
7

Multiplying these inequalities by 44/458, 66/458, 99/458 and 138/458, respectively,
and adding them we obtain a ratio %4 = 458/347 ' 1.32 for the EC(w) problem
on bipartite graphs with maximum degree ∆ = 4, that dominates the 1.61 ratio by
[25]. In the same way, we can compute the ratio %∆ for different values of ∆.

Table 4.1 summarizes the approximation ratios achieved by our algorithm, as
well as the previous best known ratios for ∆ = 3, 4, . . . , 12.

∆ Best known ratio Our ratio

3 1.17 [20] 1.17
4 1.61 [25] 1.32
5 1.75 [25] 1.45
6 1.86 [25] 1.56
7 1.95 [25] 1.65
8 2 [46] 1.74
9 2 [46] 1.81
10 2 [46] 1.87
11 2 [46] 1.93
12 2 [46] 1.98

Table 4.1: Summary of the approximation ratios achieved by Algorithm
Bipartite-1 vs. previous best known ratios for ∆ = 3, . . . , 12.

Algorithm Bipartite-1 achieves better results than the approximation ratio
(2∆−1)/3 proposed in [22], for any ∆, as well as than the 2-approximation algorithm
given in [46], for bipartite graphs with ∆ ≤ 12. Furthermore, for bipartite graphs
of 4 ≤ ∆ ≤ 7 our algorithm improves the best known results given in [25]. For

Bipartite graphs 25

bipartite graphs of maximum degree ∆ = 3, Algorithm Bipartite-1 reduces to
the 7/6-approximation algorithm proposed in [20].

Bipartite graphs of arbitrary maximum degree

In this section we present a new algorithm for the EC(w) problem on bipartite
graphs. It also produces O(|E|2) different solutions by splitting the input graph into
edge induced subgraphs and chooses the best of them. The new algorithm beats the
previous ratios for bipartite graphs for any ∆ ≥ 9 and it is the first one of this kind
yielding approximation ratios that tends asymptotically to 2 as ∆ increases.

In general, for each p = 1, 2, . . . , p2, our algorithm examines a partition of the
graph G into two edge induced subgraphs: G[E1,p] of ∆1,p ≤ 2 and G[Ep+1,m].
For each one of these partitions, the algorithm computes a solution to the EC(w)
problem on graph G.

Moreover, for each partition (p, q), p = 1, 2, . . . , p2, q = p + 1, . . . ,m, our algo-
rithm checks the existence of a set of edges in graph G[Ep+1,q], just the same to the
set required to Algorithm Bipartite-1. If such a set of edges exists the algorithm
computes a solution to the EC(w) problem on graph G.

The algorithm computes one more solution by finding a ∆-coloring of the original
graph G and returns the best among all the solutions found.

Algorithm Bipartite-2

1: Find a ∆-coloring solution C0
1,m for G;

2: for p = 1 to p2 do
3: Find an optimal solution C1

1,p for G[E1,p];

4: Find a ∆-coloring solution C1
p+1,m for G[Ep+1,m];

5: Concatenate C1
1,p and C1

p+1,m;
6: for q = p+ 1 to m do
7: Find an optimal solution C2

1,p for G[E1,p];
8: if there is a set of edges E′ in G[Ep+1,q] saturating any vertex of G[Ep+1,q]

with degree ∆1,q and E′ fits in C2
1,p then

9: Find a solution C2
p+1,q by a (∆1,q − 1)-coloring of G[Ep+1,q \E′];

10: Find a solution C2
q+1,m by a ∆-coloring of G[Eq+1,m];

11: Concatenate C2
1,p, C2

p+1,q and C2
q+1,m;

12: end if
13: end for
14: end for
15: Return the best among the solutions found in Lines 1, 5 and 11;

Note that the main difference between the new algorithm and earlier ones, like
the algorithm proposed in [25] as well as Algorithm Bipartite-1, is that it keeps
always the maximum degree ∆1,p of the subgraph G[E1,p] at most two and thus it
always computes an optimal solution forG[E1,p]. Recall that in the earlier algorithm,
∆1,p is allowed to take values form 1 to ∆, and thus there are cases where only an

26 Max-Edge-Coloring

approximate solution can be found for G[E1,p]. Due to this fact, the ratio of those
algorithms can increase to O(∆).

The existence of the set of edges E′ in Line 8 of the algorithm can be determined
in polynomial time in the same way as the same set in Algorithm Bipartite-1.

Theorem 8. Algorithm Bipartite-2 is a (2∆3

∆3+∆2+∆−1
)-approximation one for

the EC(w) problem on bipartite graphs.

Proof. The solution obtained by a ∆-coloring of the input graph computed in Line
1 of the algorithm is of weight W ≤ C0

1,m ≤ ∆ · w∗
1, since w∗

1 equals to the heaviest
edge of the graph.

In Lines 3–5, consider the solutions obtained in the iterations where w(ep+1) =
w∗
z , for z = 2, 3. In both cases it holds that ∆1,p ≤ 2. An optimal solution is

computed for G1,p of weight C1
1,p ≤

∑z−1
i=1 w∗

i , since the edges in E1,p are a subset of
the edges that appear in the z−1 heaviest colors of the optimal solution. Moreover,
a ∆-coloring is built for G[Ep+1,m] of weight C1

p+1,m ≤ ∆ · w∗
z , since ep+1 is the

heaviest edge of this subgraph. Therefore,

W ≤ ∑z−1
i=1 w∗

i +∆ · w∗
z , for z = 2, 3.

In Lines 7–12, consider the solutions obtained in the iterations (p, q) where
w(ep+1) = w∗

3 and w(eq+1) = w∗
z , for 4 ≤ z ≤ ∆. In these iterations the set of

edges E′ exists, since in the optimal solution the edges in E1,q belong in at most
∆1,q ≤ z − 1 colors. The edges of E′ are lighter than the edges in E1,p, and thus it
is possible to add them in C2

1,p without increasing its weight. Thus, using the same

arguments as for the weight of C1
1,p, it holds that C2

1,p ≤ w∗
1+w∗

2. The heaviest edges
in G[Ep+1,q \ E′] and G[Eq+1,m] are equal to w∗

3 and w∗
z , respectively. Hence, we

have that C2
p+1,q ≤ (∆1,q − 1) · w∗

3 ≤ (z − 2) · w∗
3 and C2

q+1,m ≤ ∆ · w∗
z . Therefore,

W ≤ w∗
1 + w∗

2 + (z − 2) · w∗
3 +∆ · w∗

z , for 4 ≤ z ≤ ∆.

As the algorithm returns the best among the solutions found, we have ∆ bounds
on the weight W of this best solution, i.e.,

W ≤ ∆ · w∗
1

W ≤ ∑z−1
i=1 w∗

i +∆ · w∗
z , if z = 2 or 3, and

W ≤ w∗
1 + w∗

2 + (z − 2) · w∗
3 +∆ · w∗

z , if 4 ≤ z ≤ ∆.

To derive our ratio we denote by cjz, 1 ≤ z, j ≤ ∆, the coefficient of the weight
w∗
j in the z-th bound on W and we find the solution of the system of linear equations

C · xT = 1T , that is

xz =

∆2 − 1

2∆3
, if z = 1

∆+ 1

2∆2
, if z = 2

5−∆

2∆
, if z = 3

1

∆
, if 4 ≤ z ≤ ∆.

Bipartite graphs 27

By multiplying both sides of the i-th bound on W by xi and adding all of them we
have

∑∆
z=1 xz ·W ≤ w∗

1 + w∗
2 + . . .+ w∗

∆ ≤ OPT . Hence,

W

OPT
≤ 1∑∆

z=1 xz
≤ 2∆3

(∆2 − 1) + ∆(∆ + 1) + ∆2(5−∆) + 2∆2(∆− 3)

=
2∆3

∆3 +∆2 +∆− 1
.

The complexity of Algorithm Bipartite-2 is dominated by the check in Line
8, which by Proposition 3 can be done in polynomial time. This check runs for
O(|E|2) different combinations of weights.

Improvement for bipartite graphs of arbitrary maximum degree

In this section we further explore the limitations of the same idea of repeatedly
partitioning the graph into three edge induced subgraphs of heaviest, medium and
lightest edges. We present a new algorithm for the EC(w) problem on bipartite
graphs, which improves all the previous ratios for ∆ ≥ 7.

For a partition (p, q) of G, we call critical matching a matching M ⊆ Ep+1,q

which saturates all the vertices of G[E1,q] of degree ∆1,q. The proposed algorithm
relies on the existence of such a critical matching M : a solution for the subgraph
G[E1,q] is found by concatenating a (∆1,q − 1)-coloring solution for the subgraph
G[E1,q \M] and the matching M , if exists, and by a ∆1,q-coloring of the subgraph
G[E1,q], otherwise. For each partition (p, q), the algorithm computes a solution for
the input graph G by concatenating a solution for G[E1,q] and a ∆-coloring solution
for G[Eq+1,m]. The algorithm computes also a ∆-coloring solution for the input
graph and returns the best among them.

Algorithm Bipartite-3

1: Find a ∆-coloring solution for G;
2: Let 〈E〉 = 〈e1, e2, . . . , em〉;
3: for p = 0 to m− 1 do
4: for q = p+ 1 to m do
5: Find, if any, a critical matching M in G[Ep+1,q];
6: if M exists then
7: Find a (∆1,q − 1)-coloring solution for G[E1,q \M];
8: else
9: Find a ∆1,q-coloring solution for G[E1,q];

10: end if
11: Find a ∆-coloring solution for G[Eq+1,m];
12: Find a solution for G by concatenating the solutions found in Lines 6–10

and 11 and matching M , if exists;
13: end for
14: end for
15: Return the best among the solutions found in Lines 1 and 12;

28 Max-Edge-Coloring

To find, if any, the critical matching M in Line 5 of the algorithm, we use
Proposition 3. In fact, we ask for a matching M ⊆ Ep+1,q which saturates all the
vertices of G[E1,q] of degree ∆1,q.

Theorem 9. Algorithm Bipartite-3 achieves an approximation ratio of
2(∆ + 1)3

∆3 + 5∆2 + 5∆+ 3− 2(−1/∆)∆
for the EC(w) problem on bipartite graphs.

Proof. The solution obtained by a ∆-coloring of the input graph computed in Line
1 of the algorithm is of weight W1 ≤ ∆ · w∗

1.

Consider the partition (p, q) of G where w(ep+1) = w∗
i−1 and w(eq+1) = w∗

i , for
2 ≤ i ≤ ∆ (recall that w∗

1 ≥ w∗
2 ≥ . . . ≥ w∗

k∗ and k∗ ≥ ∆). In such an iteration, all
the edges in E1,q belong to i− 1 ≥ ∆1,q colors of an optimal solution C∗.

If ∆1,q < i− 1, then an (i− 2)-coloring of G[E1,q] yields a solution of weight at
most (i− 2) · w∗

1 for this subgraph.

If ∆1,q = i−1 then a critical matching M exists. Indeed, in this case the (i−1)-
th color of C∗ always contains some edges from Ep+1,q, for otherwise all the edges
in E1,q belong to i − 2 colors of C∗, a contradiction; these edges of Ep+1,q could be
a critical matching M for the partition (p, q). Thus, a (i − 2)-coloring solution of
G[E1,q \ M] and critical matching M yield a solution for the subgraph G[E1,q] of
weight at most (i− 2) ·w∗

1 +w∗
i−1. Finally, a ∆-coloring solution for G[Eq+1,m] is of

cost at most ∆ · w∗
i .

Hence, for such a partition (p, q) the algorithm finds a solution for the whole
input graph of weight

Wi ≤ (i− 2) · w∗
1 + w∗

i−1 +∆ · w∗
i , 2 ≤ i ≤ ∆.

As the algorithm returns the best among the solutions found, we have ∆ bounds
on the weight W of this best solution, i.e.,

W ≤ ∆ · w∗
1, if i = 1, and

W ≤ (i− 2) · w∗
1 + w∗

i−1 +∆ · w∗
i , if 2 ≤ i ≤ ∆.

To derive our ratio we perform as in the previous section, solving a system of
linear equations, and we get the following multipliers:

xi =

1

∆
, if i = ∆

1

∆+ 1

(
1−

(−1

∆

)∆−i+1
)
, if ∆− 1 ≥ i ≥ 2

1

∆
−

∆−3∑

j=0

(
∆− (j + 2)

∆
x∆−j

)
− 1

∆
x2, if i = 1.

By multiplying both sides of the i-th bound on W by xi and adding all of them we

have

∆∑

i=1

xi ·W ≤ w∗
1 +w∗

2 + . . .+w∗
∆ ≤ OPT . Hence,

W

OPT
≤ 1∑∆

i=1 xi
, which after

some algebra becomes

Bipartite graphs 29

W

OPT
≤ (∆ + 1)

∆3+3∆2+∆−3
2(∆2−1)

− (∆2+(∆ mod 2)+(−1)∆(∆−1))
(∆2−1)∆∆ − (∆− 1)

∑b∆/2c
i=1

2i
∆2i

.

By differentiating both sides of the formula

b∆/2c∑

i=0

(
1

x2

)i

=
1− (x−2)b∆/2c+1

1− x−2
for

the sum of geometric series we get

−1

x

b∆/2c∑

i=1

(
2i

x2i

)
=

−2x+ 2x−2b∆/2c+1 + 2b∆/2c(x2 − 1)x−2b∆/2c−1

(x2 − 1)2

and by using this last expression for x = ∆ we finally get

W

OPT
≤ 2(∆ + 1)3

∆3 + 5∆2 + 5∆+ 3− 2(−1/∆)∆
.

Lines 5–12 of the algorithm are repeated O(|E|2) times. Finding a critical match-
ing in Line 5, takes, by Proposition 3, O(|V |2.5) time, while finding the colorings of
the bipartite subgraphs of G in Lines 6–10 and 11, takes O(|E| log∆) time [16].

In Table 4.2 we compare the approximation ratios achieved by our three algo-
rithms, as ∆ increases, with the best known ones.

∆ Best known ratio Our ratio

3 1.17 [20] 1.42 Algorithm Bipartite-1
4 1.61 [25] 1.50 Algorithm Bipartite-1
5 1.75 [25] 1.55 Algorithm Bipartite-1
6 1.86 [25] 1.60 Algorithm Bipartite-1
7 1.95 [25] 1.64 Algorithm Bipartite-3
8 2 [46] 1.67 Algorithm Bipartite-3
9 2 [46] 1.69 Algorithm Bipartite-3
10 2 [46] 1.71 Algorithm Bipartite-3
11 2 [46] 1.73 Algorithm Bipartite-3
12 2 [46] 1.75 Algorithm Bipartite-3
13 2 [46] 1.76 Algorithm Bipartite-3
20 2 [46] 1.83 Algorithm Bipartite-3
50 2 [46] 1.93 Algorithm Bipartite-3

Table 4.2: Approximation ratios for bipartite graphs

4.3 An 1.74-approximation algorithm for bipartite graphs

All the above algorithms for theEC(w) problem give good approximation guarantees
for bipartite graphs of low degree. However, if the maximum degree is arbitrary large
the achieved ratios tend or exceed two. In this section we exploit the same idea and

30 Max-Edge-Coloring

we attain an 1.74 approximation ratio that improves substantially the known 2
approximation one for the EC(w) problem on bipartite graphs of maximum degree
∆.

For a partition (p, q) of G, we call a set of edges F ⊆ Ep+1,q critical if each
vertex u ∈ V of degree d1,q(u) > ∆1,p, has degree in G[F] such that d1,q(u)−∆1,p ≤
dG[F](u) ≤ ∆1,q − ∆1,p. The proposed algorithm relies on the existence of such a
critical set of edges F : a solution for the subgraph G[E1,q] is found by concatenating
a ∆1,p-coloring solution for the subgraph G[E1,q \ F] and a (∆1,q − ∆1,p)-coloring
solution for the subgraph G[F], if F exists, and by a ∆1,q-coloring of the subgraph
G[E1,q], otherwise. For each partition (p, q), the algorithm computes a solution for
the input graph G by concatenating a solution for G[E1,q] and a ∆-coloring solution
for G[Eq+1,m]. The algorithm computes also a ∆-coloring solution for the input
graph and returns the best among them.

Algorithm Bipartite-4

1: Find a ∆-coloring solution for G;
2: for p = 0 to m− 1 do
3: for q = p+ 1 to m do
4: Find, if any, a critical set of edges F in G[Ep+1,q];
5: if F exists then
6: Find a ∆1,p-coloring solution for G[E1,q \ F];
7: Find a (∆1,q −∆1,p)-coloring solution for G[F];
8: else
9: Find a ∆1,q-coloring solution for G[E1,q];

10: end if
11: Find a ∆-coloring solution for G[Eq+1,m];
12: Find a solution for G by concatenating the solutions found in Lines 5–10

and 11;
13: end for
14: end for
15: Return the best among the solutions found in Lines 1 and 12;

The following proposition shows that the check in Line 4 of Algorithm Bipartite-
4 can be done in polynomial time. This proposition is a generalization of Proposi-
tion 3 and plays a crucial role to achieve the approximation ratio of Algorithm
Bipartite-4.

Proposition 4. For a partition (p, q) of a graph G = (V,E), a critical set of edges
F , if any, can be found in O(|V |3) time.

Proof. A (g, f)-factor of a graph G is a spanning subgraph H such that g(u) ≤
dH(u) ≤ f(u), for all u ∈ V .

Recall that F ⊆ Ep+1,q and consider the subgraph G[Ep+1,q]. For each vertex u
of G[Ep+1,q] we define g(u) = max{0, d1,q(u)−∆1,p} and f(u) = ∆1,q −∆1,p. Then,
there exists a critical set of edges F ⊆ Ep+1,q if and only if there exists a (g, f)-factor

Bipartite graphs 31

in G[Ep+1,q]. It is known that such a factor, if any, can be found in O(|V |3) time
[3].

Theorem 10. Algorithm Bipartite-4 achieves an 1.74-approximation ratio for
the EC(w) problem on bipartite graphs.

Proof. The solution obtained by a ∆-coloring of the input graph computed in Line
1 of the algorithm is of weight W1 ≤ ∆ · w∗

1.

Consider the partition (p, q) of G where w(ep+1) = w∗
d i

2e and w(eq+1) = w∗
i , for

2 ≤ i ≤ ∆ (recall that w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
k∗ and k∗ ≥ ∆). In such an iteration, all

the edges in E1,p belong to
⌈
i
2

⌉− 1 ≥ ∆1,p colors of an optimal solution C∗, and all
the edges in E1,q belong to i− 1 ≥ ∆1,q colors of an optimal solution C∗.

If ∆1,q = ∆1,p then the set F does not exist. Hence, a ∆1,q-coloring of G[E1,q]
yields a solution of weight at most

(⌈
i
2

⌉− 1
) · w∗

1 for this subgraph.

If ∆1,q > ∆1,p then a critical set of edges F exists. Indeed, in this case the colors
C∗
d i

2e, C
∗
d i

2e+1
, . . . , C∗

i−1 of C∗ always contain some edges from Ep+1,q, for otherwise

all the edges in E1,q belong to
⌈
i
2

⌉ − 1 colors of C∗, a contradiction; these edges
of Ep+1,q could be a critical set of edges F for the partition (p, q). Thus, a ∆1,p-
coloring solution of G[E1,q \F] and a (∆1,q−∆1,p)-coloring solution for G[F] yield a
solution for the subgraph G[E1,q] of weight at most ∆1,p ·w∗

1+(∆1,q−∆1,p) ·w∗
d i

2e ≤
(⌈

i
2

⌉− 1
) · w∗

1 +
⌊
i
2

⌋ · w∗
d i

2e, since ∆1,p ≤ ⌈
i
2

⌉ − 1, ∆1,q ≤ i − 1 and w∗
1 ≥ w∗

d i
2e.

Finally, a ∆-coloring solution for G[Eq+1,m] is of weight at most ∆ · w∗
i .

Hence, for such a partition (p, q) the algorithm finds a solution for the whole
input graph of weight

Wi ≤
(⌈

i

2

⌉
− 1

)
· w∗

1 +

⌊
i

2

⌋
· w∗

d i
2e +∆ · w∗

i , 2 ≤ i ≤ ∆.

As the algorithm returns the best among the solutions found, we have ∆ bounds
on the weight W of this best solution, i.e.,

W ≤ ∆ · w∗
1, if i = 1, and

Wi ≤
(⌈

i

2

⌉
− 1

)
· w∗

1 +

⌊
i

2

⌋
· w∗

d i
2e +∆ · w∗

i , if 2 ≤ i ≤ ∆.

To derive our ratio, we search again for appropriate multipliers, which can be
found by solving a system of linear equations, as in Section 4.2. For the case where
the maximum degree of the graph is a power of 2, we get the following multipliers:

xi =

blog ∆
i c∑

j=0

−

(−1

∆

)j+1 2j∑
y=1

(
j∏

z=1

(
2z−1(i− 1) +

⌈
y

2j−z+1
− 1

2

⌉))
 , if ∆ ≥ i ≥ 2

1

∆

(
1− x2 −

∆∑
j=3

(⌈
j

2

⌉
− 1

)
xj

)
, if i = 1.

These multipliers become more complicated in the case where the maximum
degree of the input graph is not a power of 2. In this case, for 2 ≤ i ≤ ∆ we get

32 Max-Edge-Coloring

xi =

blog ∆
i c∑

j=0

−

(−1

∆

)j+1 2j∑
y=1

(
j∏

z=1

(
2z−1(i− 1) +

⌈
y

2j−z+1
− 1

2

⌉))
−

(−1

∆

)blog ∆
i c+2

(
∆−i+1−∑blog ∆

i c
r=0 ((i−1)2r)

)

∑
y=1

blog ∆

i c+1∏
z=1

(
2z−1(i− 1) +

⌈
y

2blog ∆
i c+2−z

− 1

2

⌉)

while x1 is the same as in the previous case.

By multiplying both sides of the i-th bound on W by xi and adding all of them

we have
∆∑

i=1

xi ·W ≤ w∗
1 + w∗

2 + . . .+ w∗
∆ ≤ OPT , and hence,

W

OPT
≤ 1∑∆

i=1 xi
.

Using Mathematica, we compute the above ratio for quite large values of ∆, and
it is found to tend to 1.74. Table 4.3 shows the values of the ratio as ∆ increases.
However, an interesting question is whether we can compute a close formula for this
ratio.

∆ Our ratio

22 1.48837
23 1.60188
24 1.66582
25 1.70023
26 1.71809
27 1.72719
28 1.73178
29 1.73409
210 1.73525
211 1.73583
212 1.73612
213 1.73626
214 1.73634
215 1.73637
216 1.73639
217 1.73640

Table 4.3: Approximation ratios achieved by Algorithm Bipartite-4 for different
values of ∆.

4.4 Bi-valued graphs

In this section we show first that the EC(w) problem is NP-complete for complete
graphs with bi-valued edge weights. Recall that the EC(w) problem is polynomial
for bi-valued bipartite graphs [22], while for general bi-valued graphs it generalizes
the classical edge-coloring problem, which is known to be NP-complete even for
cubic graphs [41]. In the next theorem we give a reduction from this latter problem.

Bi-valued graphs 33

Theorem 11. The EC(w) problem is NP-complete for complete graphs even with
edge weights w(e) ∈ {1, 2}.
Proof. The edge-coloring problem for cubic graphs takes as input a graph G =
(V,E), |V | = n, with d(u) = 3, for each u ∈ V , and asks for the existence of a
proper 3-coloring of G. Notice that any cubic graph has an even number, n, of
vertices.

From such an instance we construct a complete weighted graph Kn with edge
weights w(e) = 2, for each e ∈ E, and w(e) = 1, otherwise, and we show that there
is a 3-coloring of G iff there is a solution C for the EC(w) problem on Kn of weight
at most n+ 2.

Assume, first, that there is a 3-coloring of G. Then, there are three colors of Kn

each one of weight equal to 2, which include all the edges of Kn of weight 2. Let
Kn − G be the graph induced by the remaining edges of Kn (those of weight 1).
The graph Kn −G is (n− 4)-colorable as a (n− 4)-regular graph of even order [13].
Therefore, there is a solution C for the EC(w) problem on Kn of weight at most
3 · 2 + (n− 4) · 1 = n+ 2.

Conversely, consider that there is a solution C to the EC(w) problem on Kn of
weight at most n+2. This solution contains k ≥ n−1 colors, since a complete graph
of even order can be colored with at least n − 1 colors [27]. Moreover, C contains
at least three colors of weight equal to 2, since, by its construction, Kn has exactly
three edges of weight 2 adjacent to each vertex. Assume that there is a fourth color
in C of weight equal to 2. Then, C will be of weight at least 4 · 2+(k− 4) · 1 ≥ n+3,
a contradiction. Therefore, C contains exactly 3 colors of weight equal to 2, which
imply a 3-coloring for G.

Theorem 11 implies that theEC(w) problem is NP-complete in all superclasses of
complete graphs, including split and interval graphs. Note also that the complexity
of the classical edge-coloring problem on interval graphs of even maximum degree
remains an open question [7]. Next corollary follows also from Theorem 11.

Corollary 1. It is NP-hard to approximate the EC(w) problem within a ratio less
than n+3

n+2 in complete graphs.

In what follows, we present an approximation algorithm for general graphs with two
different edge weights. Assume that the edges of the graph G = (V,E) have weights
either 1 or t ≥ 2. Let G[E1], of maximum degree ∆1, and G[Et], of maximum degree
∆t, be the subgraphs of G induced by its edges of weights 1 and t, respectively.

Algorithm Bi-valued

1: Find a (∆ + 1)-coloring solution for G;
2: Find a (∆1+1)-coloring solution for G[E1], a (∆t+1)-coloring solution for G[Et]

and concatenate them;
3: Return the best among the two solutions found in Lines 1 and 2;

34 Max-Edge-Coloring

Theorem 12. Algorithm Bi-valued achieves a 4
3 -approximation ratio for the

EC(w) problem on general graphs of arbitrarily large ∆ and edge weights w(e) ∈
{1, t}.
Proof. An optimal solution contains at least ∆ colors and at least ∆t of them are
of weight equal to t. Therefore, a lower bound to the weight of an optimal solution
is OPT ≥ ∆t · t+ (∆−∆t).

A (∆ + 1)-coloring of G in Line 1 of the algorithm yields a solution for the
EC(w) problem of weight W ≤ (∆ + 1) · t, while a (∆1 + 1)-coloring of G[E1]
and a (∆t + 1)-coloring of G[Et] in Line 2 yield another solution of weight W ≤
(∆t + 1) · t+ (∆1 + 1) · 1 ≤ (∆t + 1) · t+ (∆+ 1). By multiplying both sides of the

first inequality with
∆2

t + 2∆t −∆

(∆+ 1)2
, both sides of the second one with

∆−∆t

∆+ 1
and

adding them, we get
∆2 +∆2

t −∆ ·∆t +∆t

(∆ + 1)2
·W ≤ ∆t · t+ (∆−∆t) ≤ OPT , that

is
W

OPT
≤ (∆ + 1)2

(∆−∆t)2 +∆t(∆ + 1)
. This ratio is maximized when ∆t =

∆−1
2 , and

therefore
W

OPT
≤ 4(∆ + 1)

(∆ + 1) + 2(∆− 1)
=

4∆ + 4

3∆− 1
=

4

3
+

16

9∆− 3
.

Chapter 5

Max-Edge-Coloring on trees

In this chapter we describe approximation results for the EC(w) problem on trees,
as well as polynomial algorithms for subclasses of trees.

In Section 5.1 we present a polynomial algorithm for a special class of trees,
namely stars of chains (or spiders). To obtain this algorithm we need the following
theorem for trees of bounded maximum degree.

Theorem 13. The EC(w) problem can be solved in polynomial time on trees of
bounded maximum degree.

Proof. By Theorem 2(i), the EC(w) problem is polynomial on trees when the num-
ber, k, of colors is fixed. Moreover, by Proposition 2 it holds that k ≤ 2∆− 1, and
hence the theorem follows.

Although the complexity question for the EC(w) problem on trees remains open,
we give, in Section 5.2, a 3/2-approximation algorithm. Next, we present two ap-
proximation algorithms of low exponential complexity. The complexity of the first
algorithm is exponential to the maximum degree of the tree, while the second one
is exponential to the number of edges. Finally, a PTAS is presented for the EC(w)
problem on trees in Section 5.4, reaching the approximability of the VC(w) problem
on the same class of graphs.

5.1 Stars of chains

A star consists of m edges, e1, e2, . . . , em, sharing a common endpoint. Obviously,
the optimal solution to the EC(w) problem for such a weighted star is of weight
OPT =

∑m
j=1w(ej) and consists of exactly ∆ = m colors.

A star of chains consists of ∆ ≥ 3 chains, T1, T2, . . . , T∆, all starting from a
common vertex, say u. We consider each chain Tj , 1 ≤ j ≤ ∆, starting from u with
an edge euj which we call start edge. We also assume, w.l.o.g., that w(eu1) ≥ w(eu2) ≥
. . . ≥ w(eu∆).

Lemma 3. For an optimal solution C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
k∗} of the EC(w) problem

on a star of chains the following hold:

35

36 Max-Edge-Coloring

(i) The number of colors k∗ equals to either ∆ or ∆+ 1.

(ii) Only p ≤ 3 colors have cardinality |C∗
i | > 1.

(iii) At least the p− 1 heaviest start edges appear in these p colors.

Proof. For item (i), according to Proposition 2, ∆ ≤ k∗ ≤ ∆′ − 1. Here, it holds
that ∆′ = ∆+ 2.

In order to prove item (ii), assume that an optimal solution has more than three
colors of cardinality |C∗

i | > 1. Consider those colors sorted in non-increasing order
with respect to their weights. Each non start edge e has at most two neighbor edges.
So, such an edge e can be moved in one of the three first heaviest colors, since its
neighbor edges can belong in at most two different colors.

Finally, for item (iii), consider first that p = 2. Assume that in the optimal solu-
tion the heaviest start edge eu1 does not belong to neither of two colors of cardinality
|C∗

i | > 1. Then eu1 can be either inserted into one of those two colors (if this does
not contain another start edge), or eu1 can replace an existing start edge. In both
cases the weight of the optimal solution does not increase.

Assume next that p = 3. As in the previous case, eu1 can be inserted into one of
the three colors of cardinality |C∗

i | > 1. Similarly, eu2 can be inserted in one of the
remaining two of those colors.

In what follows, we distinguish between two cases according to possible number
of colors in an optimal solution, i.e., ∆ + 1 or ∆.

If an optimal solution consists of ∆+1 colors, then it contains exactly one color
without any start edge. Algorithm Star-of-Chains(∆+1) finds such an optimal
solution with ∆ + 1 colors.

Algorithm Star-of-Chains(∆ + 1)

1: Remove from the star the ∆− 2 lightest start edges;
(this creates a graph H consisting of ∆− 1 chains)

2: Find an optimal solution S∗(H) for the graph H, using Theorem 6;
3: if there are 3 non empty colors in S∗(H) then
4: Return the solution consisting of these 3 colors of S∗(H) plus ∆ − 2 colors

each one containing one of the removed ∆− 2 lightest start edges;
5: end if

Note that Algorithm Star-of-Chains(∆ + 1) it is possible to return ∆ − 1
colors of |Ci| = 1, in the case where one of the three colors of S∗(H) found in Line 2
consists of a single edge. Taking into account Lemma 3, it follows that Algorithm
Star-of-Chains(∆ + 1) returns an optimal solution of ∆ + 1 colors since: (i) the
∆− (p− 1) colors of cardinality |Ci| = 1 contain the ∆− (p− 1) lightest start edges
(one per each color), and (ii) the weight of p colors is optimal.

The complexity of Algorithm Star-of-Chains(∆ + 1) is dominated by Line
2 and by Theorem 6 it is O(|E| log |E|).

Trees 37

If an optimal solution consists of ∆ colors, then each of them contains a start
edge. Algorithm Star-of-Chains(∆) returns such an optimal solution with ∆
colors.

Algorithm Star-of-Chains(∆)

1: for j = 3 to ∆ do
2: Remove ∆− 3 start edges eu3 , e

u
4 , . . . , e

u
j−1, e

u
j+1, . . . , e

u
∆;

(this creates a star T of 3 chains and a graph H of ∆− 3 chains)
3: Find the optimal solution S∗(T) using Theorem 13;
4: if there are exactly 3 colors in S∗(T) then
5: Find the optimal solution S∗(H) using Theorem 6;
6: Combine the solutions S∗(T) and S∗(H) into exactly 3 colors;
7: Find a solution for the initial star consisting of these 3 colors plus ∆ − 3

colors each one containing one of the removed ∆− 3 start edges;
8: end if
9: end for

10: Return the best solution found;

The star T , obtained after Line 2 of the above algorithm, is a tree of maximum
degree three and therefore an optimal solution S∗(T), in Line 3, can be found in
polynomial time, by Theorem 13. Notice that such a solution consists of at least
three colors. Moreover, the optimal solution S∗(H) built in Line 5, consists of at
most three colors, by Proposition 2.

In Line 6, an optimal solution of three colors for the edges in T and H can
be obtained by considering the colors in both solutions in non-increasing order with
respect to their weights and merging the colors of each solution having the same rank,
since T and H are vertex-disjoint. The optimality of the solution that Algorithm
Star-of-Chains(∆) returns, follows from Lemma 3 using the same arguments as
for Algorithm Star-of-Chains(∆ + 1).

The complexity of the algorithm is dominated by Line 3 which takes polynomial
time and is executed ∆− 2 times.

By Lemma 3 the optimal solution to the EC(w) problem on stars of chains is the
best between the solution found by Algorithm Star-of-Chains(∆+ 1) (optimal
with ∆+1 colors) and the one found by Algorithm Star-of-Chains(∆) (optimal
with ∆ colors). Thus, the following theorem holds.

Theorem 14. The EC(w) problem is polynomial on stars of chains.

5.2 A 3/2 approximation algorithm

In this section, we first present an (1 +
w∗

1−w∗
∆

OPT)-approximation algorithm for the
EC(w) problem on trees. Then, combining this algorithm with Algorithm KK
we derive a 3/2 approximation ratio.

38 Max-Edge-Coloring

For our first algorithm we consider the tree rooted in an arbitrary vertex and we
denote by Eu the edges of the tree adjacent to a vertex u. The algorithm traverses
the vertices of the tree in pre-order and for each vertex u assigns the edges in Eu to
colors as follows.

Algorithm Trees

1: Root the tree in an arbitrary vertex r;
2: for each vertex u in a pre-order traversal of the tree do
3: Let 〈Eu〉 = 〈eu1 , eu2 , . . . , eud(u)〉, and euj , 1 ≤ j ≤ d(u), be the edge between

u, u 6= r, and its parent;
4: for i = 1 to d(u), i 6= j, do
5: Insert edge eui into the first color not containing other edge in Eu;
6: end for
7: end for

To analyze our algorithm we define yi, 1 ≤ i ≤ ∆, to be the weight of the heaviest
edge between those ranked i in each ordering 〈Eu〉, u ∈ V , i.e., yi = max

u∈V
{w(eui)}.

It is clear that y1 ≥ y2 ≥ . . . ≥ y∆. Next two propositions use these values for
bounding the weights of the colors of both an optimal solution and a solution found
by Algorithm Trees. Recall that an optimal solution to the EC(w) problem
consists of at least ∆ colors.

Proposition 5. For all 1 ≤ i ≤ ∆, it holds that w∗
i ≥ yi.

Proof. Let e = (u, v) be the heaviest edge with rank equal to i, i.e., yi = w(e).
W.l.o.g., assume that e is ranked i in Eu. Then, there exist i edges in Eu of weight
at least yi and as they belong into i different colors in an optimal solution, it follows
that w∗

i ≥ yi.

Proposition 6. Algorithm Trees constructs a solution of exactly ∆ colors. For
the weight, wi, of the i-th, 2 ≤ i ≤ ∆, color it holds that wi ≤ yi−1.

Proof. For a vertex u 6= r of the tree let e be the edge between u and its parent and
j be its rank in Eu, i.e., e = euj . In the iteration processing the vertex u the edge e
has already been inserted by the algorithm into a color, say Cp.

The algorithm inserts the edges in Er into d(r) ≤ ∆ colors. For any other vertex
u, the algorithm inserts the edges in Eu \ {e} into d(u)− 1 ≤ ∆− 1 colors different
than Cp. Therefore, the algorithm finds a solution C = {C1, C2, . . . , C∆} of exactly
∆ colors.

We prove the bounds on the color’s weights by induction on the vertices in the
order they are processed by the algorithm. We consider all colors in C of an initial
weight wi = 0, 1 ≤ i ≤ ∆.

For the root vertex r, the algorithm inserts each edge eri into color Ci, 1 ≤ i ≤
d(r). Clearly, wi = w(eri) ≤ yi ≤ yi−1, 2 ≤ i ≤ ∆.

Assume that before the iteration processing a vertex u 6= r, it holds that wi ≤
yi−1, 2 ≤ i ≤ ∆, and let w′

i be the weight of the color Ci, 2 ≤ i ≤ ∆, after processing

Trees 39

the vertex u. We prove that w′
i ≤ yi−1, 2 ≤ i ≤ ∆, by distinguishing among three

cases depending on the values of p and j:

(i) p = j: Each edge eui belongs to color Ci, 1 ≤ i ≤ d(u). Since wi ≤ yi−1

and w(eui) ≤ yi, it follows that w′
i = max{wi, w(e

u
i)} ≤ max{yi−1, yi} = yi−1,

2 ≤ i ≤ ∆.

(ii) p > j: For 1 ≤ i ≤ j − 1 and p + 1 ≤ i ≤ d(u) each edge eui belongs to color
Ci and we conclude as in Case (i). For j + 1 ≤ i ≤ p each edge eui belongs to
color Ci−1, that is w

′
i = max{wi, w(e

u
i+1)} ≤ max{yi−1, yi+1} = yi−1.

(iii) p < j: For 1 ≤ i ≤ p − 1 and j + 1 ≤ i ≤ d(u) each edge eui belongs to color
Ci and we conclude as in Case (i). For p ≤ i ≤ j − 1 each edge evi belongs to
color Ci+1, that is w

′
i = max{wi, w(e

u
i−1)} ≤ max{yi−1, yi−1} = yi−1.

Using the bounds established in Propositions 5 and 6 we obtain the next lemma.

Lemma 4. Algorithm Trees achieves an approximation ratio of 1+
w∗

1−w∗
∆

OPT < 2
for the EC(w) problem on trees.

Proof. For the weight of the first color obtained by Algorithm Trees it holds that
w1 ≤ y1 = w∗

1, since both y1 and w∗
1 are equal to the weight of the heaviest edge of

the tree. By Proposition 6 it holds that wi ≤ yi−1, 2 ≤ i ≤ ∆ and by Proposition 5
it holds that yi ≤ w∗

i , 1 ≤ i ≤ ∆. Therefore, the weight of the solution obtained by

Algorithm Trees is W =
∆∑

i=1

wi ≤ y1 +
∆∑

i=2

yi−1 = y1 +
∆−1∑

i=1

yi ≤ w∗
1 +

∆−1∑

i=1

w∗
i ≤

w∗
1 +OPT − w∗

∆, that is
W

OPT
≤ 1 +

w∗
1 − w∗

∆

OPT
< 2.

The example illustrated in Figure 5.1(a) shows that the ratio of our algorithm
can be arbitrarily close to 2. For this instance OPT = 1 + 2ε (Figure 5.1(b)), the
weight of the solution found by Algorithm Trees is W = 2 + ε (Figure 5.1(c))
and the approximation ratio becomes 2+ε

1+2ε .

ε ε ε

ε ε ε1 1 ε

(a)

1
1

C∗

1

ε

ε

ε

C∗

2

ε

ε

C∗

3

ε

(b)

C1

ε

1
ε

C2

ε

ε

C3

(c)

ε

1
ε

ε

ε

Figure 5.1: A tight example for the 2 approximation ratio of Algorithm Trees
(∆ = 3, ε << 1).

40 Max-Edge-Coloring

To derive the 3/2 approximation ratio we simply select the best among the
solutions found by Algorithm KK and Algorithm Trees.

Theorem 15. There is a 3
2 -approximation algorithm for the EC(w) problem on

trees.

Proof. Let W be the weight of the best among the solutions found by Algorithm

KK and Algorithm Trees. By Lemma 1 it holds that
W

OPT
≤ 2 − w∗

1

OPT
and

by Lemma 4 that
W

OPT
≤ 1 +

w∗
1 − w∗

∆

OPT
. As the first bound is increasing and the

second one is decreasing with respect to OPT , it follows that the ratio
W

OPT
is

maximized when 2− w∗
1

OPT
= 1+

w∗
1 − w∗

∆

OPT
, that is OPT = 2 ·w∗

1 −w∗
∆. Therefore,

W

OPT
≤ 2− w∗

1

OPT
= 2− w∗

1

2 · w∗
1 − w∗

∆

≤ 2− w∗
1

2 · w∗
1

=
3

2
.

For the tightness of the analysis in Theorem 15 consider the instance given in
Figure 5.2(a). For this instance OPT = 2+2ε (Figure 5.2(b)) and the weights of the
solutions found by Algorithm Trees and Algorithm KK are 3 (Figure 5.2(c))
and 3− ε (Figure 5.2(d)), respectively. Our algorithm selects the solution found by
Algorithm KK and the approximation ratio becomes 3−ε

2+2ε .

1 − ε 1 − ε ε

ε ε ε1 1 ε

(a)

1

1
1 − ε

C∗

1

1
1 − ε

1

C∗

2

ε

ε

C∗

3

ε

C∗

4

(b)

C1

ε

1
1 − ε

C2

ε

ε

C3

(c)

1 − ε

1
ε

11

ε ε

1 1
ε

1
1

C1

1 − ε

1

C2

ε

C3

(d)

ε

ε

1

ε

ε

1 − ε

Figure 5.2: A tight example for the 3/2-approximation algorithm for trees (∆ = 3,
ε << 1).

5.3 Moderately exponential approximation algorithms

In this section, we present two approximation algorithms for trees that improve the
3/2 ratio of Theorem 15 within exponential running time much better than that
needed for the computation of an optimal solution.

The idea employed by the algorithms is to find an approximate solution to the
EC(w) problem on a tree T = (V,E) by searching exhaustively for the weights of
a number of colors of an optimal solution C∗. A parameter z, given as input to
the algorithms, determines the (maximum) number of colors of C∗ that we search

Trees 41

exhaustively and, hence, the complexity and the approximation ratio of the algo-
rithms. In such an exhaustive search, each step of the proposed algorithms has to
answer to an instance of the Feasible-EC(w) problem, which can be done through
the EC(φ) problem (see Section 3.1).

The first algorithm proposed in Section 5.3 is exponential to the maximum de-
gree, ∆, of the input tree and achieves a ρ approximation ratio in O∗(mf(ρ)·∆) time,

where f(ρ) =
9− ρ

4ρ
. The second algorithm presented in Section 5.3 is exponential

to the number of edges, m, of the input tree and achieves a ratio of ρ in O∗(g(ρ)m)

time, where g(ρ) =
(2ρ− 1)2 + 1

(2ρ− 1)2(2ρ−1)2/((2ρ−1)2+1)
. Some values of ρ ≤ 3/2, f(ρ) and

g(ρ) are summarized in Table 5.1.

Complexity ρ OPT 1.1 1.2 1.3 1.4 1.5

O∗(mf(ρ)·∆) f(ρ) 2 1.795 1.625 1.481 1.357 1.250
O∗(g(ρ)m) g(ρ) 2 1.968 1.896 1.811 1.727 1.649

Table 5.1: Approximation ratios vs. complexities for trees

An exponential to ∆ algorithm

This algorithm depends on a parameter z taking integer values in [1, 2∆ − 1] and
iterates z times, for j = 1, 2, . . . z. In each iteration the algorithm considers all the
combinations of j edge weights as the weights of the j heaviest colors of an optimal
solution. For each combination of weights, w1 ≥ w2 ≥ . . . ≥ wj , the algorithm
has to answer to an instance of the Feasible-EC(w) problem on the input tree
T . In order a “yes” answer to this Feasible-EC(w) problem to be probable for
all values of j we extend the combination of weights w1 ≥ w2 ≥ . . . ≥ wj to a
sequence w1 ≥ w2 ≥ . . . ≥ wj = wj+1 = wj+2 = . . . = wk by adding k − j new
weights all equal to wj . In fact, this extended sequence consists of k = j − 1 + ∆
weights, if j ≤ ∆ (this way the T ’s edges of weights w(e) ≤ wj can be assigned
into the ∆ colors of weight wj) and k = 2∆ − 1, otherwise (since by Proposition
2 any solution to the EC(w) problem consists of at most 2∆ − 1 colors). Hence,
k = min{j − 1 + ∆, 2∆ − 1}. This instance of the Feasible-EC(w) problem has
answer “yes” if and only if the edges of weight w(e) > wj can be assigned to (colors
of) weights greater than wj (see the proof of Theorem 16). In this case the algorithm
finds a feasible solution for the EC(w) problem and it returns the best among all
feasible solutions found.

42 Max-Edge-Coloring

Algorithm Trees-∆(z)

1: for j = 1 to z do
2: for each combination of j edge weights, w1 ≥ w2 ≥ . . . ≥ wj , do
3: Answer to the Feasible-EC(w) problem with input T and k = min{j −

1 + ∆, 2∆− 1} weights: w1 ≥ w2 ≥ . . . ≥ wj = wj+1 = wj+2 = . . . = wk;
4: if the answer is ”yes” then
5: A feasible solution to the EC(w) problem is found;
6: end if
7: end for
8: end for
9: Return the best among the feasible solutions found;

Theorem 16. For any ρ ≥ 1, Algorithm Trees-∆(z) achieves a ρ approxima-
tion ratio for the EC(w) problem on trees, in polynomial space and running time
O∗(mf(ρ)∆), where f(ρ) = 9−ρ

4ρ .

Proof. Consider the j-th iteration of the algorithm and in this iteration the combi-
nation of j edge weights which coincide with the weights w∗

1 ≥ w∗
2 ≥ . . . ≥ w∗

j , of
the j heaviest colors of an optimal solution C∗. In this step the algorithm answers to
the instance of the Feasible-EC(w) problem with input T and weights wi ≥ w∗

i ,
1 ≤ i ≤ k. We claim that this Feasible-EC(w) problem has always a “yes” an-
swer. Indeed, if k = 2∆− 1, then the claim follows since k∗ ≤ 2∆− 1 and wi ≥ w∗

i ,
1 ≤ i ≤ k∗. If k = j − 1 +∆ < 2∆− 1, then the edges of weights w(e) > w∗

j can be
assigned (belong) to the j − 1 heaviest weights (colors of C∗). Moreover, there are
∆ weights equal to w∗

j and the edges of weights w(e) ≤ w∗
j can be assigned to them.

Hence, a feasible solution for the EC(w) problem on T is found of weight

Wj = w∗
1 + w∗

2 + . . .+ w∗
j−1 + (k − j + 1) · w∗

j .

The algorithm finds such a feasible solution in each iteration j and as it returns
the best among them we obtain ∆ bounds on the weight of this best solution, that
is W ≤ w∗

1 +w∗
2 + . . .+w∗

j−1+(k− j+1) ·w∗
j , 1 ≤ j ≤ z. Proceeding as in the proof

of Theorem 8 we find z multipliers

xj =

2∆− 1− z

∆2

(
∆− 1

∆

)∆−1−j

, if 1 ≤ j ≤ ∆

2∆− 1− z

(2∆− j)(2∆− 1− j)
, if ∆ + 1 ≤ j ≤ z

such that
W

OPT
≤ 1∑z

i=1 xi
=

1

1− 2∆−1−z
∆ · (∆−1

∆)∆−1
.

The EC(w) problem is polynomial for graphs of ∆ = 2 and as for ∆ ≥ 3 it

holds that

(
∆− 1

∆

)∆−1

>
4

9
we get

W

OPT
≤ 1

1− 4
9 · 2∆−1−z

∆

= ρ. Hence, an

approximation ratio ρ is derived for z =
9− ρ

4ρ
· ∆ − 1 = f(ρ) · ∆ − 1, where

f(ρ) =
9− ρ

4ρ
.

Trees 43

The complexity of Algorithm Trees-∆(z) is exponential in z. In Line 2 the al-
gorithm examines

(
m
j

)
combinations of weights. Thus, for all iterations

∑z
j=1

(
m
j

)
=

O(z ·mz) combinations of weights are examined. For each one of these combinations,
it takes O(m ·∆3.5) time to answer to the instance of the Feasible-EC(w) in Line
3. Since z and ∆ are O(m), the complexity of Algorithm Trees-∆(z) is O∗(mz),
that is O∗ (mf(ρ)∆

)
. Moreover, the algorithm needs polynomial space, since Line 3

is executed independently for each combination of weights.

Notice that for z = 2∆−1 theAlgorithm Trees-∆(z) finds an optimal solution
within O∗ (m2∆

)
time.

An exponential to m algorithm

This algorithm depends on a parameter z taking integer values in [1, bm2 c] and it-
erates 2z times, for k = 1, 2, . . . , z,m − z, . . . ,m. In each iteration, the algorithm
exhaustively considers k edge weights, w1, w2, . . . , wk, as the weights of the k heav-
iest colors of an optimal solution C∗, and answers to the instance of the Feasible-
EC(w) problem, with input T and w1 ≥ w2 ≥ . . . ≥ wk. This way an optimal
solution is found when k∗ ≤ z or k∗ ≥ m − z. In order to derive an approximate
solution when z < k∗ < m − z, the algorithm, in the iteration where k = z, an-
swers also to instances of the Feasible-EC(w) problem with input T and weights
w1 ≥ w2 ≥ . . . ≥ wz = wz+1 = . . . = wk′ , for k

′ = z + 1, z + 2, . . . ,m − z − 1. The
algorithm returns the best among the feasible solutions found.

Algorithm Trees-E(z)

1: for k = 1 to z and k = m− z to m do
2: for each combination of k edge weights, w1 ≥ w2 ≥ . . . ≥ wk, do
3: Answer to the Feasible-EC(w) with input T and weights

w1 ≥ w2 ≥ . . . ≥ wk;
4: if the answer is ”yes” then
5: A feasible solution to the EC(w) problem is found;
6: end if
7: if k = z then
8: for k′ = z + 1 to m− z − 1 do
9: Answer to the Feasible-EC(w) with input T and k′ weights:

w1 ≥ w2 ≥ . . . ≥ wz = wz+1 = wz+2 = . . . = wk′ ;
10: if the answer is ”yes” then
11: A feasible solution to the EC(w) problem is found;
12: end if
13: end for
14: end if
15: end for
16: end for
17: Return the best among the feasible solutions found;

44 Max-Edge-Coloring

Theorem 17. For any ρ ≥ 1, Algorithm Trees-E(z) achieves a ρ approxima-
tion ratio for the EC(w) problem on trees, in polynomial space and running time

O∗(g(ρ)m), where g(ρ) =
(2ρ− 1)2 + 1

(2ρ− 1)2(2ρ−1)2/((2ρ−1)2+1)
.

Proof. If k∗ ≤ z or k∗ ≥ m− z then the algorithm in an iteration of Lines 3–6 finds
an optimal solution.

If z < k∗ < m − z then we consider the following two solutions found by the
algorithm:

(i) In the iteration where k = m − z, for a combination w1 ≥ w2 ≥ . . . ≥ wk of
weights, it holds that wi = w∗

i , 1 ≤ i ≤ k∗. Hence, for this combination there
is a feasible solution of weight at most w∗

1+w∗
2+ . . .+w∗

k∗ +(m−z−k∗)w∗
k∗ =

OPT + (m− z − k∗)w∗
k∗ .

(ii) In the iteration where k = z and k′ = k∗, for a combination w1 ≥ w2 ≥ . . . ≥ wk

of weights, it holds that wi = w∗
i , 1 ≤ i ≤ z. Hence, for this combination there

is a feasible solution of weight at most w∗
1 + w∗

2 + . . . + w∗
z + (k∗ − z)w∗

z =
OPT −∑k∗

i=z+1w
∗
i + (k∗ − z)w∗

z .

Thus, it holds that

W

OPT
≤ min

{
OPT + (m− z − k∗)w∗

k∗

OPT
,
OPT −∑k∗

i=z+1w
∗
i + (k∗ − z)w∗

z

OPT

}

≤ min

{
1 +

(m− z − k∗)w∗
k∗

zw∗
z + (k∗ − z)w∗

k∗
, 1 +

(k∗ − z)(w∗
z − w∗

k∗)

zw∗
z + (k∗ − z)w∗

k∗

}
.

As the first value is increasing with w∗
k∗ and the second one is decreasing, this

quantity is maximized when (k∗ − z)w∗
z = (m− 2z)w∗

k∗ . Therefore, we have

W

OPT
≤ 1 +

(m− z − k∗)w∗
k∗

z(m−2z)
k∗−z w∗

k∗ + (k∗ − z)w∗
k∗

=
k∗(m− 2z)

z(m− 2z) + (k∗ − z)2
,

which is maximized for k∗ =
√
z(m− z). Hence,

W

OPT
≤

√
z(m− z)(m− 2z)

z(m− 2z) + (
√
z(m− z)− z)2

=
m− 2z

2
√

z(m− z)− 2z
.

By setting z = λm, where 0 < λ ≤ 1
2 , we get

W

OPT
≤ m− 2λm

2
√

λm(m− λm)− 2λm
=

1− 2λ

2
√
λ(1− λ)− 2λ

= ρ.

Therefore, in order to achieve a ρ approximation ratio we choose λ =
1

(2ρ− 1)2 + 1
,

that is z =
m

(2ρ− 1)2 + 1
.

Trees 45

The algorithm needs polynomial space, since Lines 3–14 are executed indepen-
dently for each combination of weights. As the Feasible-EC(w) problem is poly-
nomial for trees, the complexity of the algorithm is, within a polynomial factor,
O(T (m)), where T (m) is the number of combinations generated. For this number
it holds that

T (m) ≤
z∑

i=1

(
m

i

)
+

m∑

i=m−z

(
m

i

)
= 2

z∑

i=1

(
m

i

)
≤ 2z

(
m

z

)
≤ m

(
m

λm

)

≤ m

((
1

λ

)λ(1

1− λ

)1−λ
)m

= m

(
(2ρ− 1)2 + 1

(2ρ− 1)2(2ρ−1)2/((2ρ−1)2+1)

)m

= m · g(ρ)m.

Hence, the complexity of Algorithm Trees-E(z) becomesO∗(g(ρ)m), where g(ρ) =
(2ρ− 1)2 + 1

(2ρ− 1)2(2ρ−1)2/((2ρ−1)2+1)
.

Note that for z = bm2 c Algorithm Trees-E(z) computes an optimal solution
for the EC(w) problem on trees in O∗(2m) time and polynomial space.

In [5], an algorithm has been presented with running time and space O∗(2n),
which, for any k, computes the number of all proper k-vertex-colorings of a graph,
and moreover enumerates these colorings. This algorithm can be used to find an
optimal solution for the VC(w) problem on a general graph, by running it for
1 ≤ k ≤ n. Considering the line graph L(G) of the input graph G of the EC(w)
problem, we derive that the EC(w) problem on general graphs can be optimally
solved with running time and space O∗(2m).

Next proposition shows that if ∆ = o(m) then the running time of Algorithm
Trees-E(z) for computing an optimal solution is improved.

Proposition 7. If ∆ = o(m), then Algorithm Trees-E(z) requires subexponen-
tial running time 2o(m) in order to compute an exact solution for trees.

Proof. By Proposition 2, the number k∗ of colors in any optimal solution to the
EC(w) problem is at most 2∆ − 1. Thus, the number of combinations of weights
needed to be generated by the algorithm becomes

T (m) ≤
(
m

2∆

)
≤ mm

(2∆)2∆(m− 2∆)m−2∆

≤ 2m logm−2∆ log(2∆)−(m−2∆) log(m−2∆)

≤ 2m log (1+2∆/(m−2∆))+2∆ log(m/2∆−1)

Notice first that 2∆/(m − 2∆) tends to 0 for m → ∞, since ∆ = o(m), and

thus m log

(
1 +

2∆

(m− 2∆)

)
→ 0. Moreover, note that 2∆ log

(m

2∆
− 1

)
= o(m),

since
2∆ log

(
m
2∆ − 1

)

m
tends to 0 as m increases. Combining the two observations

46 Max-Edge-Coloring

above, we get that T (m) = 2o(m) and, hence, the running time of Algorithm
Trees-E

(
m
2

)
is O∗ (2o(m)

)
.

Notice that Algorithm Trees-E
(⌊

m
2

⌋)
and Algorithm Trees-∆(2∆ − 1)

coincide and both return an optimal solution to the EC(w) problem on trees. Thus
the last proposition holds for both algorithms.

5.4 Polynomial Time Approximation Scheme

In this section we combine the idea of iteratively splitting the input graph with
Algorithm Trees in order to derive a PTAS for the EC(w) problem on trees.

In fact, our algorithm splits a tree G = (V,E), into subgraphs G[E1,j] and
G[Ej+1,m] induced by the j heaviest and the n− j lightest edges of G, respectively
(by convention, we consider G[E1,0] as an empty subgraph). The algorithm depends
on a parameter p such that all the edges of G of weights w∗

1, w
∗
2, . . . , w

∗
p−1 are in a

subgraph G[E1,j]. We obtain a solution for the whole graph by concatenating an
optimal solution of at most p − 1 colors for G1,j , if there is one, and the solution
obtained by Algorithm Trees for G[Ej+1,m].

Algorithm Trees-Scheme(p)

1: Let 〈E〉 = 〈e1, e2, . . . em〉;
2: for j = 0 to m do
3: Split the graph into two edge induced subgraphs:

- G[E1,j] induced by edges e1, e2, . . . , ej
- G[Ej+1,n] induced by edges ej+1, ej+2, . . . , em

4: if there is a solution for G[E1,j] with at most p− 1 colors then
5: Find an optimal solution for G[E1,j] with at most p− 1 colors;
6: Run Algorithm Trees for G[Ej+1,m];
7: Concatenate the two solutions found in Lines 5 and 6;
8: end if
9: end for

10: Return the best solution found;

Theorem 18. Algorithm Trees-Scheme(p) is a PTAS for the EC(w) problem
on trees.

Proof. Consider the iteration j, j ≤ m, of the algorithm where the weight of the
heaviest edge in G[Ej+1,m] equals to the weight of the i-th color of an optimal
solution, i.e. w(ej+1) = w∗

i , 1 ≤ i ≤ p.

The edges of G[E1,j] are a subset of those appeared in the i − 1 heaviest colors
of the optimal solution. Thus, an optimal solution for G[E1,j] is of weight

OPT1,j ≤ w∗
1 + w∗

2 + . . .+ w∗
i−1.

Trees 47

The edges of G[Ej+1,m] are a superset of those appeared in the k∗−(i−1) lightest
colors of the optimal solution. The extra edges of G[Ej+1,m] are of weight at most
w∗
i and appear in an optimal solution into at most i − 1 colors. Thus, an optimal

solution for G[Ej+1,m] is of weight

OPTj+1,m ≤ w∗
i + w∗

i+1 + . . .+ w∗
k∗ + (i− 1) · w∗

i = i · w∗
i + w∗

i+1 + . . .+ w∗
k∗ .

By Lemma 4, Algorithm Trees returns a solution for G[Ej+1,m] of weight

Wj+1,m ≤ OPTj+1,m + w∗
i − w∗

∆

≤ i · w∗
i + w∗

i+1 + . . .+ w∗
k∗ + w∗

i

≤ (i+ 1) · w∗
i + w∗

i+1 + . . .+ w∗
k∗ .

Therefore, the solution found in this iteration j for the whole graph G is of weight

Wi = OPT1,j +Wj+1,m ≤ w∗
1 + w∗

2 + . . .+ w∗
i−1 + (i+ 1) · w∗

i + w∗
i+1 + . . .+ w∗

k∗ .

In all the iterations of the algorithm we obtain p such inequalities for W . By

multiplying the i-th, 1 ≤ i ≤ p, inequality by
1

i · (Hp + 1)
and adding up all of them,

we have

(
p∑

i=1

1

i · (Hp + 1)

)
·W ≤ OPT , that is

W

OPT
≤ Hp + 1

Hp
= 1 +

1

Hp
.

Algorithm Trees-Scheme(p) iterates |E| times. In each iteration: (i) an op-
timal solution, if any, with at most p− 1 colors for G[E1,j] is found using Theorem
2(i), in O(|E|p−1 · |E| ·∆3.5) time, and (ii) Algorithm Trees of complexity O(|V | ·
∆ · log∆) is called for G[Ej+1,m]. Choosing p such that ε = 1

Hp
, we get p = O(2

1
ε).

Consequently, we have a PTAS for the EC(w) problem on trees, that is an approx-
imation ratio of 1 + 1

Hp
= 1 + ε within time O

(|E| (|V | ·∆ · log∆ + |E|p ·∆3.5
))

which is exponential to 1
ε .

48

Chapter 6

Bounded Max-Edge-Coloring

In this chapter we deal with the complexity and approximability of the EC(w, b)
problem. First, we present an approximation algorithm for general and bipartite
graphs. Then, we prove that the problem is NP-complete for trees and we give a
2-approximation algorithm for this case. Note that this is the first complexity result
for any max-coloring problem on trees.

6.1 General and bipartite graphs

Our approximation algorithm for general and bipartite graphs is based on tight
bounds on the number of colors in a solution to the EC(w, b) problem. In fact, our
bounds apply to any nice solution 〈C〉 = 〈C1, C2, . . . , Ck〉 to the EC(w, b) problem.
We call such a solution nice if each color Ci, 1 ≤ i ≤ k, is of cardinality |Ci| = b
or Ci is maximal in the subgraph induced by the edges

⋃k
j=iCj . It is easy to see

that any solution to the EC(w, b) problem can be transformed into a nice one of the
same total weight.

Proposition 8. For the number, k, of colors in any nice solution to the EC(w, b)
problem it holds that:

max{∆,

⌈ |E|
b

⌉
} ≤ k ≤

⌈ |E|
b

⌉
−
⌈
∆2

2b

⌉
+ (2∆− 1), for general graphs

⌈ |E|
b

⌉
−

⌈
∆2

b

⌉
+ (2∆− 1), for bipartite graphs

Proof. The lower bounds follow trivially. For the upper bounds, let 〈C〉 = 〈C1, C2,
. . . , Ck〉 be a nice solution, e = (u, v) be an edge in the last color Ck, and Eu

and Ev be the sets of edges adjacent to vertices u and v, respectively. By the
niceness of the solution C it follows that edge e does not appear in any color Ci,
1 ≤ i ≤ k − 1, because |Ci| = b or Ci contains at least one edge in Eu or Ev. Let
W,X, Y ⊆ {C1, C2, . . . , Ck−1} such that W = {Ci : |Ci| = b}, X = {Ci : |Ci| < b
and Ci contains an edge e ∈ Eu} and Y = {Ci : |Ci| < b and Ci contains an edge
e ∈ Ev}. Let E1 be the set of edges in the colors in W and E2 = E \ E1 be the set

of edges in the colors in X ∪ Y ∪ {Ck}. Then, k = |E1|
b + x+ y + 1, where x = |X|

and y = |Y |.

49

50 Bounded Max-Edge-Coloring

Assume, w.l.o.g., thatX1Y1X2Y2 . . . XlYl is the order of colors in the nice solution
〈C〉, where Xi ⊆ X, Yi ⊆ Y , 1 ≤ i ≤ l, and X1 is possibly empty. Let xi = |Xi| and
yi = |Yi|, 1 ≤ i ≤ l.

For general graphs, consider a color C ∈ Xi and let Si =
⋃l

j=i Yj and si =
∑l

j=i yj .
The edge (u, z) ∈ C ∩Eu prevents at most one edge (v, z) ∈ Si ∩Ev from being into
C. Moreover, each other edge (p, q) ∈ C prevents at most two edges (v, p), (v, q) ∈
Si ∩Ev from being into C. As the colors in Si contain exactly si edges from Ev and
all of them are prevented from being into color C, it follows that |C| ≥ ⌈

si−1
2

⌉
+ 1.

Therefore, there exist at least xi ·
⌈
si−1
2

⌉
+ xi edges in Xi. In a similar way, by

considering a color C ∈ Yi there exist at least yi ·
⌈
ti−1
2

⌉
+ yi edges in Yi, where

ti =
∑l

j=i+1 xj . Summing up these bounds, and taking into account that yl − 1 ≥ 0
(since Yl is not empty), it follows that

|E2| ≥
l∑

i=1

(xi ·
⌈
si − 1

2

⌉
+ xi) +

l∑

i=1

(yi ·
⌈
ti − 1

2

⌉
+ yi)

=
x(y − 1)− (y1 + y2 + . . .+ yl−1)

2
+ x+ y + 1

≥ x(y − 1)− (y1 + y2 + . . .+ yl−1 + yl − 1)

2
+ x+ y + 1

=
(x− 1)(y − 1)

2
+ x+ y + 1 ≥ (x+ 1)(y + 1)

2
+ 1 ≥

⌈
(x+ 1)(y + 1)

2

⌉
.

Therefore, k = |E\E2|
b +x+y+1 ≤

⌈ |E|
b

⌉
−
⌈
(x+1)(y+1)

2b

⌉
+x+y+1 If ∆ ≤ 2b then

this quantity is maximized when x = y = ∆−1 and hence k ≤
⌈ |E|

b

⌉
−
⌈
∆2

2b

⌉
+(2∆−1).

If ∆ > 2b then the above quantity is maximized when x = ∆ − 1 and y = 0 and

hence k ≤
⌈ |E|

b

⌉
− ⌈

∆
2b

⌉
+∆ ≤

⌈ |E|
b

⌉
−
⌈
∆2

2b

⌉
+ (2∆− 1).

For bipartite graphs, the proof is similar. The structure of a bipartite graph allows
a tighter bound on the number of edges in the colors in Xi and Yi. Consider, again,
a color C ∈ Xi. For the edge (u, z) ∈ C ∩Eu, there is no edge (v, z) ∈ Si∩Ev, while
each other edge (p, q) ∈ C prevents at most one edge (v, p) or (v, q) in Si ∩Ev from
being into C. Thus, |C| ≥ si + 1 and, hence, there exist at least xi(si + 1) edges
in Xi. Similarly there exist at least yi(ti + 1) edges in Yi. The rest of the proof is
along the same lines, but using these bounds.

Our algorithm for general and bipartite graphs adapts the greedy 2-approximation
algorithm presented in [46] for the EC(w) problem to the EC(w, b) problem.

Algorithm Greedy

1: Let 〈E〉 = 〈e1, e2, . . . , em〉;
2: for j = 1 to m do
3: Insert edge ej in the first color of cardinality less than b which does not contain

other edges adjacent to ej ;
4: end for

General and bipartite graphs 51

The solution derived byAlgorithm Greedy is a nice one, since it is constructed
in a first-fit manner. The analysis of this algorithm given in the next lemma is based
on Proposition 8.

Lemma 5. Algorithm Greedy achieves approximation ratios of 3− 2√
2b

on gen-

eral graphs, and 3− 2√
b
on bipartite graphs, for the EC(w, b) problem.

Proof. Let 〈C〉 = 〈C1, C2, . . . , Ck〉, be a solution derived by Algorithm Greedy.
Consider the color Ci and let ej be the first edge inserted in Ci, i.e. wi = w(ej). Let
Ei = {e1, e2, . . . , ej}, Gi be the subgraph of G induced by the edges in Ei, and ∆i

be the maximum degree of Gi.
As the solution 〈C〉 is a nice one and an optimal solution can be also considered

to be nice, by Proposition 8, for general graphs, it follows that (i) i ≤
⌈ |Ei|

b

⌉
−⌈

∆2
i

2b

⌉
+ (2∆i − 1), and (ii) in an optimal solution the edges of Gi appear in at

least i∗ ≥ max{∆i,
⌈ |Ei|

b

⌉
} colors, each one of weight at least wi. Therefore, i

i∗ ≤
⌈ |Ei|

b

⌉
−
⌈

∆2
i

2b

⌉
+(2∆i−1)

max
{
∆i,

⌈ |Ei|
b

⌉} . By distinguish between ∆i ≥
⌈ |Ei|

b

⌉
and ∆i <

⌈ |Ei|
b

⌉
it follows

that in either case i
i∗ ≤ 3− ∆2

i+2b
2b∆i

. This bound is maximized when ∆i =
√
2b, that

is i
i∗ ≤ 3− 2√

2b
. Thus, wi ≤ w∗

i∗ ≤ w∗⌈
i/
(
3− 2√

2b

)⌉. Summing up these inequalities for

all i’s, 1 ≤ i ≤ k, we obtain the
(
3− 2√

2b

)
ratio for general graphs.

A similar analysis yields the
(
3− 2√

b

)
ratio for bipartite graphs.

We present here an example for which the algorithm performs a ratio of 3− 2√
2b

for general graphs. Consider the general graph shown in Figure 6.1(a), where 1 >> ε,
and b = 7. The weight of the optimal solution shown in Figure 6.1(b) is 3+ 3ε. The
weight of the solution obtained by Algorithm Greedy, shown in Figure 6.1(c), is
7− ε. Thus, the ratio for this instance is 7−ε

3+3ε ' 7
3 ' 3− 2√

14
.

1 + ε

1
1 1

1

1 − ε

1 − ε

1 − ε

(a)

1 + ε 1 + ε 1 + ε 1 + ε 1 + ε 1 1 1 − ε 1 − ε 1 − ε

(b) (c)

Figure 6.1: (a) An instance of the EC(w, b) problem on general graphs, 1 >> ε,
b = 7. (b) An optimal solution. (c) The solution obtained by Algorithm Greedy.

52 Bounded Max-Edge-Coloring

Consider, now, the bipartite graph shown in Figure 6.2(a), where 1 >> ε, and
b = 9. The optimal solution is of weight 3 + 3ε (Figure 6.2(a)), while the weight of
the solution obtained by Algorithm Greedy is 7− ε (Figure 6.2(c)). Hence, the
ratio for this instance is 7−ε

3+3ε ' 7
3 = 3− 2√

9
= 3− 2√

b
.

1 + ε

1

1

1

1

1

11 − ε

1 − ε

1 − ε

(a)

1 + ε 1 + ε 1 + ε 1 + ε 1 + ε 1 1 1 − ε 1 − ε 1 − ε

(b) (c)

Figure 6.2: (a) An instance of the EC(w, b) problem on bipartite graphs, 1 >> ε,
b = 9. (b) An optimal solution. (c) The solution obtained by Algorithm Greedy.

Combining Lemma 5 and Theorems 3, 4 and 5, it follows that

Theorem 19. The EC(w, b) problem can be approximated with a ratio of min{3−
2/
√
2b,Hb, db/2e} for general graphs and min{e, 3 − 2/

√
b,Hb, db/2e} for bipartite

graphs.

Note that, the Hb ratio outperforms the other only for b = 3 or 5, for general
graphs, and b = 3, for bipartite graphs, and, hence, b can be considered as fixed.
These ratios are shown in Table 6.1, for several values of b.

b General graphs Bipartite graphs

3 1.833 Hb 1.833 Hb

4 2.000 db/2e 2.000 3− 2/
√
b or db/2e

5 2.283 Hb 2.106 3− 2/
√
b

6 2.423 3− 2/
√
2b 2.184 3− 2/

√
b

. 3− 2/
√
2b . . . 3− 2/

√
b

50 2.800 3− 2/
√
2b 2.717 3− 2/

√
b

51 2.802 3− 2/
√
2b 2.718 e

. 3− 2/
√
2b . . . e

Table 6.1: Approximation ratios for the EC(w, b) problem.

Trees 53

6.2 NP-completeness for trees

To prove that the EC(w, b) problem is NP-complete on trees, we will present a
reduction from the bounded list vertex-coloring problem, VC(φ, bi). By Theorem
1(iii), VC(φ, bi) problem is NP-complete even for chains, |φ(u)| ≤ 2, for all u ∈ V ,
and bi ≤ 5, 1 ≤ i ≤ k.

We prove first that the bounded list edge-coloring, EC(φ, b), problem is NP-
complete even if the graph G = (V,E) is a set of chains, |φ(e)| = 2, for all e ∈ E,
and b = 5. We denote this problem as EC(chains, |φ(e)| = 2, b = 5).

Proposition 9. The EC(chains, |φ(e)| = 2, b = 5) problem is NP-complete.

Proof. By Theorem 1(iii), the VC(chains, |φ(v)| ≤ 2, bi ≤ 5) problem is NP-
complete. Given that the line-graph of a chain is also a chain, it follows that the
EC(chains, |φ(e)| ≤ 2, bi ≤ 5) problem is also NP-complete. The latter problem can
be easily reduced to the EC(chains, |φ(e)| ≤ 2, b = 5) problem, where bi = b = 5 for
all colors: for every color Ci with bi < 5, add 5−bi independent edges with just Ci in
their lists. This last problem reduces to the EC(chains, |φ(e)| = 2, b = 5) problem,
where |φ(e)| = 2 for all edges. This can be done by transforming an instance of
EC(chains, |φ(v)| ≤ 2, b = 5) as following: (i) add two new colors Ck+1 and Ck+2,
both with cardinality bound b = 5, (ii) add color Ck+1 to the list of every edge e
with |φ(e)| = 1, (iii) add ten independent edges and put in their lists both colors
Ck+1 and Ck+2.

Theorem 20. The EC(w, b) problem on trees is NP-complete.

Proof. Our reduction is from EC(chains, |φ(e)| = 2, b = 5) problem. We construct
an instance of the EC(w, b) problem on a forest G′ = (V ′, E′) as follows.

We replace every edge e = (u, v) ∈ E with a chain of three edges: e1 = (u, u′),
e2 = (u′, v′) and e3 = (v′, v), where w(e1) = w(e2) = w(e3) = 1. Moreover, we create
k − |φ(e)| = k − 2 stars of k − 1 edges each. We add edges (u′, st), 1 ≤ t ≤ k − 2,
between u′ and the central vertex st of each of these k− 2 stars; thus every star has
now exactly k edges. Let φ(e) = {Ci, Cj}. The k − 2 edges (u′, st) take different

.

. . .

u u
′

v
′

v1 1 1

1 i − 1 i + 1 j − 1 j + 1 k

. . .

. . .

2 3 k

. . .

. . .

1 i − 2 k

.

21 k − 1

. . .

i

Figure 6.3: The gadget for an edge e = (u, v) with φ(e) = {Ci, Cj}.

weights in {1, 2, . . . , k} \ {i, j}. Let q be the weight taken by an edge (u′, st). The
remaining k − 1 edges of the star t take different weights in {1, 2, . . . , k} \ {q}. In
the same way, we add k − 2 stars connected to v′. In Figure 6.3, is shown the u′’s

54 Bounded Max-Edge-Coloring

part of this edge-gadget for e = (u, v). For every edge e of G, we add 2(k − 2) stars
and 2(k − 2)k + 2 edges.

To complete our construction we define fi to be the frequency of color Ci in the
lists of all edges and F = max{fi|1 ≤ i ≤ k}. For every color Ci we add F − fi
disconnected copies of the color-gadget shown in Figure 6.4. Such a gadget consists
of an edge e = (x, y) and k − 1 stars with k − 1 edges each. There are also edges
between one of the endpoints of e, say y, and the central vertices of all stars; thus
every star has now exactly k edges. The edge e takes weight i and the edges in the
stars of such a color-gadget take weights similarly with those in the stars of an edge-
gadget. For a color Ci we add (F − fi)(k− 1) stars and (F − fi)(k− 1)k+ (F − fi)
edges.

. . .

yx i

1 i − 1 i + 1 k

. . .

. . .

2 3 k

.

1i − 2 k

.

21 k − 1i1

. . .

i i + 2 k

Figure 6.4: A gadget for the color Ci.

The number of stars in the forestG′ we have constructed is 2|E|(k−2)+
∑k

i=1(F−
fi)(k−1) = k(k−1)F−2|E|, since∑k

i=1 fi = 2|E|. By setting b′ = k(k−1)F−2|E|+
5+F , we prove that: “There is a k-coloring for EC(φ, b) (chains, |φ(e)| = 2, b = 5),
if and only if, G′ has a bounded max-edge-coloring of total weight

∑k
i=1 i such that

every color is used at most b′ times”.

Consider, first, a solution C to the EC(φ, b) problem. We construct a solution
C′ for the EC(w, b) problem as following. Let e = (u, v) ∈ E be an edge with
φ(e) = {Ci, Cj}, which, w.l.o.g., appears in the color Ci of C. Put the edges e1 and
e3 of the edge-gadget for e in color C ′

i, while the edge e2 in color C ′
j . After doing this

for all edges in E, each color C ′
i contains at most 2·5+1·(fi−5) = fi+5 edges. Next,

put the edges with weight i, 1 ≤ i ≤ k, from the k(k−1)F −2|E| stars into C ′
i. Each

color C ′
i in C′ constructed so far contains at most k(k−1)F−2|E|+fi+5 = b′−(F−fi)

edges and, by the construction of G′, C′ is a proper coloring. In the F − fi color-
gadgets for Ci there are F − fi remaining (x, y) edges of weight i, which can still be
inserted into color C ′

i. Thus, we get a solution for the EC(w, b) problem of k colors,

each one of at most b′ edges, and total weight
∑k

i=1 i.
Conversely, consider a solution C′ to the EC(w, b) problem. C′ consists of exactly

k colors of weights 1, 2, . . . , k, since each star in G′ has k edges and each edge has a
different weight in the range {1, 2, . . . , k}. Thus, all edges of the same weight, say
i, should belong in the same color C ′

i of C′. Therefore, C ′
i contains one edge from

each one of the k(k − 1)F − 2|E| stars as well as the F − fi remaining (x, y) edges
of the color-gadgets having weight i. Consider, now, the edges of G′ corresponding

Trees 55

to the edges e1, e2 and e3 of the edge-gadget for an edge e with φ(e) = {Ci, Cj}.
By the construction of G′ and the choice of edge weights, the edges e1, e2 and e3
should appear into colors C ′

i and C ′
j . Thus, edges e1 and e3 should appear, w.l.o.g.,

into color C ′
i, while e2 into color C ′

j . Therefore, the edge e ∈ E can be colored by
color Ci ∈ φ(e). Finally, a color C ′

i contains at most 5 edges of type e1 (or e3),
corresponding to at most 5 edges of E; otherwise |C ′

i| ≥ k(k − 1)F − 2|E| + (F −
fi) + (2 · 6 + 1 · (fi − 6)) > b′, a contradiction.

To complete our proof for the EC(w, b) problem on trees, let p be the number of
trees in G′. We add a set of p−1 edges of weight ε < 1 to transform the forest G′ into
a single tree T . This can be done as every tree of G′ has at least two vertices. By
keeping the same bound b′, it is easy to see that there is a solution for the EC(w, b)
problem on G′ of weight

∑k
i=1 i, if and only if, there is a solution for the EC(w, b)

problem on T whose weight is equal to
∑k

i=1 i+
⌈
p−1
b′

⌉
ε.

6.3 A 2-approximation algorithm for trees

In Section 5.2 a 2-approximation algorithm for the EC(w) problem on trees has
been presented, which is also exploited to derive a ratio of 3/2 for that problem.
This algorithm yields a solution of ∆ colors, M = {M1,M2, . . . ,M∆}. Starting from
this solution we obtain a solution to the EC(w, b) problem by finding the ordered
b-partition of each color in M. For the sake of completeness we give below the whole
algorithm.

Algorithm Convert

1: Let Tr be the tree rooted in an arbitrary vertex r;
2: for each vertex v in pre-order traversal of Tr do
3: Let 〈Ev〉 = 〈e1, e2, . . . , ed(v)〉 be the edges adjacent to v, and (v, p) be the edge

from v, v 6≡ r, to its parent;
4: Using ordering 〈Ev〉, insert each edge in Ev, but (v, p), into the first color

which does not contain an edge in Ev;
5: end for
6: Let M = {M1,M2, . . . ,M∆} be the colors constructed;
7: for i = 1 to ∆ do
8: Let PMi = {M i

1,M
i
2, . . . ,M

i
ki
} be the ordered b-partition of 〈Mi〉;

9: end for
10: Return a solution 〈C〉 = 〈C1, C2, . . . , Ck〉, C =

⋃∆
i=1 PMi ;

Theorem 21. Algorithm Convert is a 2-approximation one for the EC(w, b)
problem on trees.

Proof. Consider the color Cj in the solution 〈C〉 and let e be the heaviest edge in
Cj , i.e., w(e) = wj . Let X ⊆ Cj = {C1, C2, . . . , Cj−1} such that each color Cp ∈ X
has (i) |Cp| = b, and (ii) all edges of weight at least w(e). Let also Y = Cj \ X,

56 Bounded Max-Edge-Coloring

|X| = x and |Y | = y. Clearly, x + y = j − 1. Let j∗ be the number of colors in an
optimal solution of weight at least w(e), that is wj ≤ w∗

j∗ .
There are at least x · b+ y + 1 edges of weight at least w(e). These edges in an

optimal solution appear in at least
⌈
x·b+y+1

b

⌉
≥ x+ 1 colors, that is, j∗ ≥ x+ 1.

We show, next, that all colors in Y ∪{Cj} come from y+1 different colors in M.
Assume that two of these colors, Cq and Cr, come from the ordered b-partition of
the same color Mt ∈ M. Assume, w.l.o.g., that wq ≥ wr, and let f be the heaviest
edge in Cr. Note that Cr may coincide with Cj , while Cq cannot. As Cq ∈ Y , it
follows that |Cq| = b and there is an edge f ′ ∈ Cq with w(f ′) < w(e) ≤ w(f), a
contradiction to the definition of the ordered b-partition of Mt. Therefore, Cj comes
from a color Mi ∈ M, i ≥ y+1, that is e ∈ Mi. By the construction of the coloring
M, there are at least i − 1 edges, adjacent to each other, of weight at least w(e)
(i.e., i− 2 of them adjacent to e and e itself). These i− 1 edges appear in different
colors in an optimal solution, that is, j∗ ≥ y.

Combining the two lower bounds for j∗ and taking into account that x+y = j−1

we get j∗ ≥
⌈
j
2

⌉
. Therefore, wj = w∗

j∗ ≤ w∗
d j

2e and summing up the weights wj of

all colors in C we get W =
∑k

j=1wj ≤ 2
∑dk/2e

j=1 w∗
j ≤ 2

∑k∗
j=1w

∗
j ≤ 2OPT , since

k∗ ≥ ⌈
k
2

⌉
. A tight example for this algorithm, is given in Section 5.2, as for large

values of b the EC(w, b) coincides with the EC(w) problem. By a careful analysis,
the complexity of both Lines 2–5 and 7–9 of the algorithm is O(|V | log |V |).

Chapter 7

Bounded Max-Vertex-Coloring

In this chapter we first present a simple 2-approximation algorithm for the VC(w, b)
problem on bipartite graphs. The unweighted variant of this algorithm gives a
4
3 approximation ratio for the VC(b) problem on bipartite graphs, which closes
the approximability question for this case. Then, we give a generic scheme which
becomes a 17

11 -approximation algorithm for bipartite graphs, a PTAS for bipartite
graphs and fixed b, as well as a PTAS for trees. Recall also that by Theorem 3 there
is an Hb approximation ratio for general graphs, if b is fixed.

7.1 A simple split algorithm

Let G = (U ∪ V,E), |U ∪ V | = n, be a vertex weighted bipartite graph. Our first
algorithm colors the vertices of each class of G separately, by finding the ordered
b-partitions of classes U and V . For the minimum number of colors k∗ it holds that

k∗ ≥
⌈ |U |+|V |

b

⌉
and, therefore, k =

⌈ |U |
b

⌉
+

⌈ |V |
b

⌉
≤

⌈ |U |+|V |
b

⌉
+ 1 ≤ k∗ + 1.

Algorithm Split

1: Let PU = {U1, U2, . . . , UkU } be the ordered b-partition of U ;
2: Let PV = {V1, V2, . . . , VkV } be the ordered b-partition of V ;
3: Return the coloring C = PU ∪ PV ;

Theorem 22. Algorithm Split returns a solution of weight W ≤ 2 · w∗
1 + w∗

2 +
. . .+ w∗

k∗ ≤ 2 ·OPT for the VC(w, b) problem in bipartite graphs.

Proof. Let 〈C〉 = 〈C1, C2, . . . , Ck〉 be the colors constructed by Algorithm Split,
that is w1 ≥ w2 ≥ . . . ≥ wk. Assume, w.l.o.g., that Ux, 1 ≤ x ≤ kU , is the i − th
color in 〈C〉. Let also u be the heaviest vertex of Ux, that is w(u) = wi.

The ordered b-partition of U and V implies that the colors that appear before
Ux in 〈C〉 are the colors U1, U2, . . . , Ux−1 and V1, V2, . . . , Vy, y = i − x. The colors
U1, U2, . . . , Ux−1 are all of cardinality b and their (x−1)·b vertices are all of weight at
least w(v). The colors V1, V2, . . . , Vy−1, are also all of cardinality b and their (y−1)·b
vertices are all of weight at least the weight of the heaviest vertex of color Vy which

57

58 Bounded Max-Vertex-Coloring

is at least w(v). Taking into account the vertex v itself it follows that there are in
G at least (x− 1) · b+ [(y− 1) · b+1]+ 1 = (x+ y− 2) · b+2 = (i− 2) · b+2 vertices
of weight at least w(v) = wi. In an optimal solution, these vertices belong into at

least
⌈
(i−2)·b+2

b

⌉
= (i− 1) colors, each one of weight at least wi. Hence, w

∗
i−1 ≥ wi,

2 ≤ i ≤ k. Clearly, w1 = w∗
1, since both are equal to the weight of the heaviest

vertex of the graph, and as k ≤ k∗ + 1, we obtain

W =
k∑

i=1

wi = w∗
1 +

k∑

i=2

wi ≤ w∗
1 +

k−1∑

i=1

w∗
i

≤ w∗
1 +

k∗∑

i=1

w∗
i = 2 · w∗

1 + w∗
2 + . . .+ w∗

k∗ ≤ 2 ·OPT.

The complexity of Algorithm Split is dominated by the sorting needed to
obtain the ordered b-partitions of U and V in Lines 1 and 2, that is O(|V | · log |V |).

Algorithm Split applies also to theVC(b) problem on bipartite graphs. More-
over, the absence of weights in theVC(b) problem allows a tight analysis with respect
to the 4

3 inapproximability bound.

Theorem 23. There is a 4
3 -approximation algorithm for the VC(b) problem on

bipartite graphs.

Proof. Assume, first, that |U | + |V | ≥ 2b + 1. Then, k∗ ≥ d2b+1
b e = 3 and, since

k ≤ k∗ + 1, we get k
k∗ ≤ 4

3 .
Assume, next, that b < |U |+ |V | ≤ 2b. In this case the optimal solution consists

of two or three colors and it is polynomial to decide between them. In fact, by
Theorem 1(ii), it is polynomial to decide if a bipartite graph can be colored with
two colors even for the general VC(φ, bi) problem.

Assume, finally, that |U |+ |V | ≤ b. Then, an optimal solution consists of either
two colors (if E 6= ∅) or one color (if E = ∅).

7.2 A generic scheme

In this section we combine the ideas used in Section 5.4 for the EC(w) problem with
Algorithm Split to design a generic scheme for the VC(w, b) problem.

To obtain our scheme we split a bipartite graph G = (U ∪ V,E), |U ∪ V | = n,
into two subgraphs G1,j and Gj+1,n induced by the j heaviest and the n− j lightest
vertices of G, respectively (by convention, we consider G1,0 as an empty subgraph).
Our scheme depends on a parameter p such that all the vertices of G of weights
w∗
1, w

∗
2, . . . , w

∗
p−1 are in a subgraph G1,j . This is always possible for some j ≤ b(p−1),

since each color of an optimal solution for G contains at most b vertices. In fact, for
every j, 1 ≤ j ≤ b(p−1), we obtain a solution for the whole graph by concatenating

Bipartite graphs and trees 59

an optimal solution of at most p− 1 colors for G1,j , if there is one, and the solution
obtained by Algorithm Split for Gj+1,n.

Algorithm Scheme(p)

1: Let 〈U ∪ V 〉 = 〈u1, u2, . . . un〉;
2: for j = 0 to b · (p− 1) do
3: Split the graph into two vertex induced subgraphs:

- G1,j induced by vertices u1, u2, . . . , uj
- Gj+1,n induced by vertices uj+1, uj+2, . . . , un

4: if there is a solution for G1,j with at most p− 1 colors then
5: Find an optimal solution for G1,j with at most p− 1 colors;
6: Run Algorithm Split for Gj+1,n;
7: Concatenate the two solutions found in Lines 5 and 6;
8: end if
9: end for

10: Return the best solution found;

Lemma 6. Algorithm Scheme(p) achieves a
(
1 + 1

Hp

)
approximation ratio for

the VC(w, b) problem.

Proof. Consider the iteration j, j ≤ b · (p − 1), of the algorithm where the weight
of the heaviest vertex in Gj+1,n equals to the weight of the i-th color of an optimal
solution, i.e. w(uj+1) = w∗

i , 1 ≤ i ≤ p.
The vertices of G1,j are a subset of those appeared in the i− 1 heaviest colors of

the optimal solution. Thus, an optimal solution for G1,j is of weight

OPT1,j ≤ w∗
1 + w∗

2 + . . .+ w∗
i−1.

The vertices of Gj+1,n are a superset of those appeared in the k∗−(i−1) lightest
colors of the optimal solution. The extra vertices of Gj+1,n are of weight at most
w∗
i and appear in an optimal solution into at most i − 1 colors. Thus, an optimal

solution for Gj+1,n is of weight OPTj+1,n ≤ w∗
i + w∗

i+1 + . . . + w∗
k∗ + (i − 1) · w∗

i =
i ·w∗

i +w∗
i+1 + . . .+w∗

k∗ . By Theorem 22, Algorithm Split returns a solution for
Gj+1,n of weight

Wj+1,n ≤ (i+ 1) · w∗
i + w∗

i+1 + . . .+ w∗
k∗ .

Therefore, the solution found in this iteration j for the whole graph G is of weight

Wi = OPT1,j +Wj+1,n ≤ w∗
1 + w∗

2 + . . .+ w∗
i−1 + (i+ 1) · w∗

i + w∗
i+1 + . . .+ w∗

k∗ .

In all the iterations of the algorithm we obtain p such inequalities for W . By

multiplying the i-th, 1 ≤ i ≤ p, inequality by
1

i · (Hp + 1)
and adding up all of them,

we have

(
p∑

i=1

1

i · (Hp + 1)

)
·W ≤ OPT , that is

W

OPT
≤ Hp + 1

Hp
= 1 +

1

Hp
.

60 Bounded Max-Vertex-Coloring

The complexity of theAlgorithm Scheme(p) is O(bp(f(p)+|V | log |V |)), where
O(f(p)) is the complexity of checking for the existence of solutions with at most p−1
colors for G1,j and finding an optimal one among them, while O(|V | log |V |) is the
complexity of Algorithm Split. Algorithm Scheme(1) coincides with Algo-
rithm Split. Algorithm Scheme(2) has simply to check if the j ≤ b vertices
of G1,j are independent from each other and, therefore, it derives a 5

3 approximate
solution in polynomial time. Algorithm Scheme(3) has to check and find, a two
color solution for G1,j , if any. This can be done in polynomial time by Theorem 2(ii).
Thus, Algorithm Scheme(3) is a polynomial time 17

11 -approximation algorithm for
the VC(w, b) problem on bipartite graphs.

However, when p ≥ 4 and b is a part of the instance, finding an optimal solution
in G1,j is an NP-hard problem (even for the VC(b) problem [6]). Hence, we consider
that b is a fixed constant. In this case, we run an exhaustive algorithm for finding, if
any, an optimal solution in G1,j of at most p− 1 colors. The complexity of such an
exhaustive algorithm is O

(
(p− 1)b·(p−1)

)
and thus, the complexity of Algorithm

Scheme(p), p ≥ 4, becomes O
(
bpbp + n2 log n

)
, since bp is O(|V |). Choosing p

such that ε = 1
Hp

, we get p = O(2
1
ε). Consequently, for fixed b, we have a PTAS

for the VC(w, b) problem on bipartite graphs, that is an approximation ratio of

1 + 1
Hp

= 1 + ε within O

(
b
(
2

1
ε

)b2
1
ε

+ |V |2 log |V |
)

time.

Furthermore, in the particular case of trees, checking the existence of solutions
with at most p − 1 colors for G1,j , and finding an optimal one among them, can
be done, by Theorem 2(i), in polynomial time for fixed p. The complexity of our

scheme in this case becomes O
(
b2

1
ε

(
|V |2

1
ε + |V |2 log |V |

))
. Therefore, the follow-

ing theorem holds.

Theorem 24. For the VC(w, b) problem, Algorithm Scheme(p) is a
(i) polynomial time 17

11 -approximation algorithm for bipartite graphs (for p = 3),
(ii) PTAS for bipartite graphs if b is fixed,
(iii) PTAS for trees.

Chapter 8

Conclusions and open questions

We presented complexity results and approximation algorithms for (bounded) max-
coloring problems that arise in computer and communication systems, with respect
to the class of the underlying graph. Our results concern general and bipartite
graphs, trees and bi-valued graphs.

For the EC(w) problem, recall that it is known to be approximable within a
factor of 2 (for any class of graphs) and inapproximable within a factor less than
7/6 (even for bipartite graphs), while its complexity for trees remains open. We
narrow these gaps in the approximability of the problem by presenting an 1.74-
approximation algorithm for bipartite graphs, and a PTAS for trees. Moreover, we
prove that the problem is NP-complete for complete bi-valued graphs and we present
an asymptotic 4/3-approximation algorithm for general bi-valued graphs.

The EC(w, b) problem is NP-complete for bipartite graphs as a generalization
of the EC(w) problem. We prove that it is NP-complete even on trees, which is the
first complexity result for all the (bounded) max-coloring problems on this class of
graphs. On the other hand, we present approximation algorithms of ratio at most 3
for general and bipartite graphs and 2 for trees.

The VC(w, b) problem is non approximable by a constant factor approximation
ratio on general graphs, as a generalization of the classical vertex coloring problem,
as well as by a factor within 4/3 on bipartite graphs, a result that comes from
the VC(b) problem. We present approximation algorithms of ratio

⌈
b
2

⌉
for general

graphs and 17/11 for bipartite graphs, and a PTAS for trees. Finally, for the VC(b)
problem, we show that the known 4/3 lower bound for bipartite graphs is tight by
providing a 4/3-approximation algorithm.

The recent research activity on the (bounded) max-coloring problems has led to a
significant progress on understanding their complexity and approximability, though
there is enough room for further research. A first category of open questions can be
picked up by looking the entries of Table 1.1.

i. Further identification of the frontier between polynomial and NP-hard variants
of the problems with respect to the underlying graph. For example, the com-
plexity of all the VC(w), VC(w, b) and EC(w) problems on trees remains the
most interesting open question.

61

62 Conclusions

ii. Decrease (or close) the gaps between the best known approximation ratios and
inapproximability bounds, either by obtaining new improved approximation al-
gorithms, or by strengthening existing inapproximability results. For example,
a 2-approximation algorithm and a 4/3-inapproximability result are known for
the EC(w) problem on general graphs of any maximum degree. The gap is
narrower for bipartite graphs, as we presented an 1.74-approximation algorithm
and a 7/6-inapproximability result is known. Moreover, the NP-completeness
proof for the EC(w, b) problem on trees does not prevent the existence of a
better ratio than the 2 approximation one we presented, or even a PTAS, such
as for the VC(w), VC(w, b) and EC(w) problems. Hence, it would be interest-
ing to decrease these approximability gaps by improving either the lower or the
upper bounds.

A second category of interesting questions is related to the nature of the appli-
cations of the (bounded) max-coloring problems:

i. As we have already mentioned in Chapter 1 all the (bounded) max-coloring
problems are equivalent to the parallel batch scheduling problem with incom-
patibilities between jobs. Within this context, a natural idea to decrease the
weight of a solution to such a weighted coloring problem is to allow preemption,
that is interrupt the execution of a job and complete it later. It is known that the
preemptive EC(w) problem for bipartite graphs is equivalent to the preemptive
open shop scheduling problem which can be solved optimally in polynomial time
[48]. An interesting question here is the complexity of the preemptive EC(w)
problem on general graphs. Similar questions are also of interest for the VC(w)
problem.

ii. In the same scheduling context, there a significant setup delay, say d, to establish
each batch. For the (bounded) max-coloring problems the presence of such a
delay can be easily handled by increasing the weight of the vertices or edges of G
by d. This way the weight of each batch will be also increased by d, incorporating
its set-up delay. However, for the preemptive variants of the problems the
existence of the setup delay plays a crucial role, since the preemption increases
the number of batches as well as the total setup overhead.

iii. The applications of all problems are on-line in nature. In practice, buffers are
allocated as memory requests are created, and messages are scheduled as they
arrive, with out knowledge of future. The online version of both problems is
therefore of great practical and theoretical interest.

Finally, a third category of open questions includes some problems of technical
nature.

i. The 1.74 approximation ratio of the algorithm we presented for the EC(w) prob-
lem on bipartite graphs, is obtained using computational tools (Mathematica).
It would be interesting to have a close formula for this ratio.

Conclusions 63

ii. Our analysis of the approximation algorithm for the EC(w, b) problem pre-
sented, yields ratios of 3 − 2√

2b
for general graphs and 3 − 2√

b
for bipartite

graphs. However, this algorithm reduces to the greedy 2-approximation one for
the EC(w) problem when the cardinality bound b is large enough. Hence, the
ratios for the EC(w, b) problem should tend to 2 instead of increasing with the
bound b. Thus, a question here is a better analysis of our algorithm to match
this fact.

64

Bibliography

[1] F. N. Afrati, T. Aslanidis, E. Bampis, and I. Milis. Scheduling in switching
networks with set-up delays. Journal of Combinatorial Optimization, 9:49–57,
2005.

[2] N. Alon. A note on the decomposition of graphs into isomorphic matchings.
Acta Mathematica Hungarica, 42:221–223, 1983.

[3] R. P. Anstee. An algorithmic proof of Tutte’s f -factor theorem. Journal of
Algorithms, 6:112–131, 1985.

[4] B. S. Baker and E. G. Coffman Jr. Mutual exclusion scheduling. Theoretical
Computer Science, 162:225–243, 1996.

[5] A. Björklund and Th. Husfeldt. Inclusion–exclusion algorithms for counting
set partitions. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 575–582. IEEE Computer Society, 2006.

[6] H. L. Bodlaender and K. Jansen. Restrictions of graph partition problems. Part
I. Theoretical Computer Science, 148:93–109, 1995.

[7] V. A. Bojarshinov. Edge and total coloring of interval graphs. Discrete Applied
Mathematics, 114:23–28, 2001.

[8] G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time slot as-
signment algorithm for an SS/TDMA system with variable number of transpon-
ders. IEEE Trans. on Communications, 29:721–726, 1981.

[9] M. Boudhar. Scheduling on a batch processing machine with split compatibility
graphs. Journal of Mathematical Modelling and Algorithms, 4:391–407, 2005.

[10] M. Boudhar and G. Finke. Scheduling on a batch machine with job compatibili-
ties. Belgian Journal of Oper. Res., Statistics and Computer Science, 40:69–80,
2000.

[11] L. Cai and J. A. Ellis. Np-completeness of edge-coloring some restricted graphs.
Discrete Applied Mathematics, 30:15–27, 1991.

[12] B.-L. Chen, H.-L. Fu, and M. T. Ko. Total chromatic number and chromatic
index of split graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing, 17:137•–146, 1995.

65

66 Bibliography

[13] A. G. Chetwynd and A. J. W. Hilton. Regular graphs of high degree are 1-
factorizable. In Proceedings of the London Mathematical Society, volume 50,
pages 193–206, 1985.

[14] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4:233–235, 1979.

[15] J. Cohen, E. Jeannot, N. Padoy, and F. Wagner. Messages scheduling for
parallel data redistribution between clusters. IEEE Transactions on Parallel
and Distributed Systems, 17:1163–1175, 2006.

[16] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in
O(E logD) time. Combinatorica, 21:5–12, 2001.

[17] P. Crescenzi, X. Deng, and Ch. H. Papadimitriou. On approximating a schedul-
ing problem. Journal of Combinatorial Optimization, 5:287–297, 2001.

[18] D. de Werra. Decomposition of bipartite multigraphs into matchings. Mathe-
matical Methods of Operations Research, 16:85–90, 1972.

[19] D. de Werra. Restricted coloring models for timetabling. Discrete Mathematics,
165/166:161–170, 1997.

[20] D. de Werra, M. Demange, B. Escoffier, J. Monnot, and V. Th. Paschos.
Weighted coloring on planar, bipartite and split graphs: Complexity and ap-
proximation. Discrete Applied Mathematics, 157:819–832, 2009.

[21] D. de Werra, A. Hertz, D. Kobler, and N. V. R. Mahadev. Feasible edge coloring
of trees with cardinality constraints. Discrete Mathematics, 222:61–72, 2000.

[22] M. Demange, D. de Werra, J. Monnot, and V. Th. Paschos. Time slot scheduling
of compatible jobs. Journal of Scheduling, 10:111–127, 2007.

[23] M. Dror, G. Finke, S. Gravier, andW. Kubiak. On the complexity of a restricted
list-coloring problem. Discrete Mathematics, 195:103–109, 1999.

[24] L. Epstein and A. Levin. On the max coloring problem. In 5th Workshop
on Approximation and Online Algorithms (WAOA’07), volume 4927 of LNCS,
pages 142–155. Springer, 2008.

[25] B. Escoffier, J. Monnot, and V. Th. Paschos. Weighted coloring: Further
complexity and approximability results. Information Processing Letters, 97:98–
103, 2006.

[26] G. Finke, V. Jost, M. Queyranne, and A. Sebő. Batch processing with interval
graph compatibilities between tasks. Discrete Applied Mathematics, 156:556–
568, 2008.

[27] S. Fiorini and R. J. Wilson. Edge-colourings of graphs. Pitman, London, 1977.

Bibliography 67

[28] S. Fiorini and R. J. Wilson. Edge colorings of graphs. In L. W. Beineke
and R. J. Wilson, editors, Selected Topics in Graph Theory, pages 103–126.
Academic Press, 1978.

[29] H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. Algorithms
for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku University,
1985.

[30] F. Gardi. Mutual exclusion scheduling with interval graphs or related classes.
Part II. Discrete Applied Mathematics, 156:794–812, 2008.

[31] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The
complexity of coloring circular arcs and chords. SIAM Journal on Algebraic
and Discrete Methods, 1:216–227, 1980.

[32] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237–267, 1976.

[33] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum cov-
ering by cliques, and maximum independent set of a chordal graph. SIAM
Journal on Computing, 1:180–187, 1972.

[34] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980.

[35] I. S. Gopal and C. Wong. Minimizing the number of switchings in a SS/TDMA
system. IEEE Transactions On Communications, 33:497–501, 1985.

[36] S. Gravier, D. Kobler, and W. Kubiak. Complexity of list coloring problems
with a fixed total number of colors. Discrete Applied Mathematics, 117:65–79,
2002.

[37] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[38] M. M. Halldórsson. A still better performance guarantee for approximate graph
coloring. Information Processing Letters, 45:19–23, 1993.

[39] M. M. Halldórsson and H. Shachnai. Batch coloring flat graphs and thin. In
11th Scandinavian Workshop on Algorithm Theory (SWAT’08), volume 5124 of
LNCS, pages 198–209. Springer, 2008.

[40] P. Hansen, A. Hertz, and J. Kuplinsky. Bounded vertex colorings of graphs.
Discrete Mathematics, 111:305–312, 1993.

[41] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10:718–720, 1981.

[42] M. Jarvis and B. Zhou. Bounded vertex coloring of trees. Discrete Mathematics,
232:145–151, 2001.

68 Bibliography

[43] D. S. Johnson. The np-completeness column: An ongoing guide. Journal of
Algorithms, 6:434–451, 1985.

[44] I. A. Karapetian. On coloring of arc graphs. Akademiia nauk Armianskoi SSR
Doklady, 70:306•–311, 1980.

[45] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85•–103.
Plenum Press, 1972.

[46] A. Kesselman and K. Kogan. Nonpreemptive scheduling of optical switches.
IEEE Trans. on Communications, 55:1212–1219, 2007.

[47] D. König. Über graphen und ihre anwendung auf determinantentheorie und
mengenlehre. Mathematische Annalen, 77:453–465, 1916.

[48] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel
processors by linear programming. Journal of the Association for Computing
Machinery, 25:612–619, 1978.

[49] R. C. S. Machado, C. M. H. de Figueiredo, and K. Vušković. Chromatic index
of graphs with no cycle with a unique chord. preprint, 2009.

[50] S. Micali and V. V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum
matching in general graphs. In 21st Annual IEEE Symposium on Foundations
of Computer Science (FOCS’80), pages 17–27. IEEE Computer Society, 1980.

[51] S. V. Pemmaraju and R. Raman. Approximation algorithms for the max-
coloring problem. In 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP’05), volume 3580 of LNCS, pages 1064–1075.
Springer, 2005.

[52] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimization using
max-coloring. In 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 562–571, 2004.

[53] F. Rendl. On the complexity of decomposing matrices arising in satellite com-
munication. Operations Research Letters, 4:5–8, 1985.

[54] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. The four colour
theorem. Journal of Combinatorial Theory, Series B, 70:2–44, 1997.

[55] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are Class
I. Journal of Combinatorial Theory, Series B, 83:201–212, 2001.

[56] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.
Analiz, 3:25–30, 1964.

[57] V. G. Vizing. Critical graphs with given chromatic index. Diskret. Analiz,
5:9–17, 1965.

Bibliography 69

[58] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In 38th Annual ACM Symposium on the Theory
of Computing (STOC’06), pages 681–690, 2006.

