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1 Introduction

Energy minimization is an important issue in our days [8]. One of the main mechanisms
for reducing the energy consumption in modern computer systems is the use of speed
scalable processors. Starting from the seminal paper of Yao et al. [16], many papers
adopted the speed-scaling model in which if a processor runs at speed s, then the rate
of the energy consumption, i.e., the power, is P (s) = sα with α a constant. This model
captures the intuitive idea that the faster a processor works the more energy it consumes.
Recently, a series of papers [12, 11, 10] have proposed an extension of this model in order
to capture the heterogeneity of the forthcoming computer architectures [6, 13, 14, 15]. In
their model, each processor has its own power function. This means that a job executed
with the same speed on different machines consumes more or less energy.

Our work is in the same direction. We consider a fully heterogeneous environment
where both, the jobs’ characteristics are processor-dependent and every processor has
its own power function. Formally, we consider the following problem: we are given a
set J of n jobs and a set P of m parallel processors. Every processor i ∈ P obeys to a
different speed-to-power function, i.e., it is associated with a different αi > 2 and hence
if a job runs at speed s on processor i, then the power is P (s) = sαi . Each job j ∈ J
has a different release date ri,j , deadline di,j and work wi,j in each processor i ∈ P. The
assumption that the jobs have processor-dependent works is well suited for computer
systems composed by a set of specialized processors, each one being able at executing
efficiently a particular type of jobs. In such a system different works for the same
job may correspond to different level of quality. Moreover, processor-dependent release
dates are interesting for the non-migratory variant when the processors are connected
by a network. In such a case we may assume that every job is initially available at a
given processor and that a transfer time must elapse before it becomes available at a
new machine [4, 7].

We consider two variants of the multiprocessor preemptive problem: the migratory
and the non-migratory. In both cases, the execution of a job may be interrupted and
resumed later. In the migratory case each job may be executed by more than one

∗{Evripidis.Bampis, Giorgio.Lucarelli}@lip6.fr. LIP6, Univ. Pierre et Marie Curie, France.
†alvenko@math.nsc.ru. Sobolev Institute of Mathematics, Novosibirsk, Russia.
‡dimitris.letsios@ibisc.univ-evry.fr. IBISC, Univ. d’ Évry, France.
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processors, without allowing parallel execution of a job. If x units of work for the job
j are executed on the processor i, then x

wi,j
portion of j is accomplished by i. In the

non-migratory case each job has to be entirely executed on a single processor. In the
last part of the paper we focus on the non-preemptive single-processor case.

2 Related work

Yao et al. [16] proposed an optimal algorithm for finding a feasible preemptive schedule
with minimum energy consumption when a single-processor is available. The multipro-
cessor case has been solved optimally in polynomial time when both the preemption and
the migration of jobs are allowed [1, 5]. Albers et al. [2] considered the multiprocessor
problem, where the preemption of the jobs is allowed, but not their migration. They
proved that the problem is NP-hard even for instances with common release dates and
common deadlines. Greiner et al. [9] gave a generic reduction transforming an optimal
schedule for the multiprocessor problem with migration, to a Bα-approximate solution
for the multiprocessor problem with preemptions but without migration, where Bα is
the α-th Bell number. Antoniadis and Huang [3] proved that the single-processor non-
preemptive problem is NP-hard and they proposed a 25α−4-approximation algorithm.
All above multiprocessor results concern the homogeneous case.

3 Results

We consider first the heterogeneous multiprocessor speed-scaling problem when the pre-
emption and the migration of jobs are allowed. We formulate the problem as a con-
figuration LP with an exponential number of variables and a polynomial number of
constraints. To deal with this, we consider the dual LP and we show how to apply the
ellipsoid algorithm to it. As we perform a geometric rounding in order to discretize the
possible speed values, our solution is an additive factor ε far from the optimal.

Theorem 1 A schedule for the heterogeneous multiprocessor speed-scaling problem with
migrations of energy consumption OPT +ε can be found in polynomial time with respect
to the size of the instance and to 1/ log(1 + ε).

Then, we pass to the heterogeneous multiprocessor preemptive speed-scaling problem
where the migration of jobs is not permitted, which is known to be NP-hard [2]. We
formulate the problem as a configuration IP and we follow the same approach as before
in order to solve the LP relaxation. Then, we perform a randomized rounding and
we get the approximation result of the following theorem. Note that, it is possible to
derandomize our algorithm using the method of conditional expectations.

Theorem 2 In the case where αmax = maxi∈P{αi} ≥ 2, there is an approximation
algorithm which achieves a ratio of (1 + ε)Bαmax for the heterogeneous multiprocessor
speed-scaling problem without migrations in time polynomial to n and to 1/ε.

Finally, we exploit this last result in order to improve the approximation ratio for the
single-processor non-preemptive speed-scaling problem. We propose an approximation
algorithm that gives better approximation guarantees for any α < 114 with respect to the
best known algorithm of Antoniadis and Huang [3]. Note that in practical applications
α is usually between two and three.
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Theorem 3 The single-processor speed-scaling problem without preemptions can be ap-
proximated within a factor of 2α−1(1 + ε)Bα.
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