
Energy Efficient Multiprocessor Scheduling via

Configuration LP

Evripidis Bampis∗ Alexander Kononov† Dimitrios Letsios∗‡

Giorgio Lucarelli∗‡ Maxim Sviridenko§

1 Introduction

Energy minimization is an important issue in our days [8]. One of the main mechanisms
for reducing the energy consumption in modern computer systems is the use of speed
scalable processors. Starting from the seminal paper of Yao et al. [16], many papers
adopted the speed-scaling model in which if a processor runs at speed s, then the rate
of the energy consumption, i.e., the power, is P (s) = sα with α a constant. This model
captures the intuitive idea that the faster a processor works the more energy it consumes.
Recently, a series of papers [12, 11, 10] have proposed an extension of this model in order
to capture the heterogeneity of the forthcoming computer architectures [6, 13, 14, 15]. In
their model, each processor has its own power function. This means that a job executed
with the same speed on different machines consumes more or less energy.

Our work is in the same direction. We consider a fully heterogeneous environment
where both, the jobs’ characteristics are processor-dependent and every processor has
its own power function. Formally, we consider the following problem: we are given a
set J of n jobs and a set P of m parallel processors. Every processor i ∈ P obeys to a
different speed-to-power function, i.e., it is associated with a different αi > 2 and hence
if a job runs at speed s on processor i, then the power is P (s) = sαi . Each job j ∈ J
has a different release date ri,j , deadline di,j and work wi,j in each processor i ∈ P. The
assumption that the jobs have processor-dependent works is well suited for computer
systems composed by a set of specialized processors, each one being able at executing
efficiently a particular type of jobs. In such a system different works for the same
job may correspond to different level of quality. Moreover, processor-dependent release
dates are interesting for the non-migratory variant when the processors are connected
by a network. In such a case we may assume that every job is initially available at a
given processor and that a transfer time must elapse before it becomes available at a
new machine [4, 7].

We consider two variants of the multiprocessor preemptive problem: the migratory
and the non-migratory. In both cases, the execution of a job may be interrupted and
resumed later. In the migratory case each job may be executed by more than one

∗{Evripidis.Bampis, Giorgio.Lucarelli}@lip6.fr. LIP6, Univ. Pierre et Marie Curie, France.
†alvenko@math.nsc.ru. Sobolev Institute of Mathematics, Novosibirsk, Russia.
‡dimitris.letsios@ibisc.univ-evry.fr. IBISC, Univ. d’ Évry, France.
§M.I.Sviridenko@warwick.ac.uk. Department of Computer Science, University of Warwick, UK.

1



processors, without allowing parallel execution of a job. If x units of work for the job
j are executed on the processor i, then x

wi,j
portion of j is accomplished by i. In the

non-migratory case each job has to be entirely executed on a single processor. In the
last part of the paper we focus on the non-preemptive single-processor case.

2 Related work

Yao et al. [16] proposed an optimal algorithm for finding a feasible preemptive schedule
with minimum energy consumption when a single-processor is available. The multipro-
cessor case has been solved optimally in polynomial time when both the preemption and
the migration of jobs are allowed [1, 5]. Albers et al. [2] considered the multiprocessor
problem, where the preemption of the jobs is allowed, but not their migration. They
proved that the problem is NP-hard even for instances with common release dates and
common deadlines. Greiner et al. [9] gave a generic reduction transforming an optimal
schedule for the multiprocessor problem with migration, to a Bα-approximate solution
for the multiprocessor problem with preemptions but without migration, where Bα is
the α-th Bell number. Antoniadis and Huang [3] proved that the single-processor non-
preemptive problem is NP-hard and they proposed a 25α−4-approximation algorithm.
All above multiprocessor results concern the homogeneous case.

3 Results

We consider first the heterogeneous multiprocessor speed-scaling problem when the pre-
emption and the migration of jobs are allowed. We formulate the problem as a con-
figuration LP with an exponential number of variables and a polynomial number of
constraints. To deal with this, we consider the dual LP and we show how to apply the
ellipsoid algorithm to it. As we perform a geometric rounding in order to discretize the
possible speed values, our solution is an additive factor ε far from the optimal.

Theorem 1 A schedule for the heterogeneous multiprocessor speed-scaling problem with
migrations of energy consumption OPT +ε can be found in polynomial time with respect
to the size of the instance and to 1/ log(1 + ε).

Then, we pass to the heterogeneous multiprocessor preemptive speed-scaling problem
where the migration of jobs is not permitted, which is known to be NP-hard [2]. We
formulate the problem as a configuration IP and we follow the same approach as before
in order to solve the LP relaxation. Then, we perform a randomized rounding and
we get the approximation result of the following theorem. Note that, it is possible to
derandomize our algorithm using the method of conditional expectations.

Theorem 2 In the case where αmax = maxi∈P{αi} ≥ 2, there is an approximation
algorithm which achieves a ratio of (1 + ε)Bαmax for the heterogeneous multiprocessor
speed-scaling problem without migrations in time polynomial to n and to 1/ε.

Finally, we exploit this last result in order to improve the approximation ratio for the
single-processor non-preemptive speed-scaling problem. We propose an approximation
algorithm that gives better approximation guarantees for any α < 114 with respect to the
best known algorithm of Antoniadis and Huang [3]. Note that in practical applications
α is usually between two and three.

2



Theorem 3 The single-processor speed-scaling problem without preemptions can be ap-
proximated within a factor of 2α−1(1 + ε)Bα.

References

[1] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with
migration: extended abstract. In SPAA’11, pages 279–288. ACM, 2011.

[2] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In
SPAA’07, pages 289–298. ACM, 2007.

[3] A. Antoniadis and C.-C. Huang. Non-preemptive speed scaling. In SWAT’12,
volume 7357 of LNCS, pages 249–260. Springer, 2012.

[4] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling
(Extended abstract). In STOC’92, pages 571–580, 1992.

[5] E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings. In
ISAAC’12, volume 7676 of LNCS, pages 106–115. Springer, 2012.

[6] F. A. Bower, D. J. Sorin, and L. P. Cox. The impact of dynamically heterogeneous
multicore processors on thread scheduling. IEEE Micro, 28:17–25, 2008.

[7] X. Deng, H.-N. Liu, and B. Xiao. Deterministic load balancing in computer net-
works. In SPDP’90, pages 50–57, 1990.

[8] J. Glanz. Power, pollution and the internet, September 22, 2012. The New York
Times.

[9] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multipro-
cessor scheduling. In SPAA’09, pages 11–18. ACM, 2009.

[10] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling het-
erogeneous processors isn’t as easy as you think. In SODA’12, pages 1242–1253,
2012.

[11] A. Gupta, R. Krishnaswamy, and K. Pruhs. Nonclairvoyantly scheduling power-
heterogeneous processors. In Green Computing Conference, pages 165–173, 2010.

[12] A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably scheduling power-
heterogeneous processors. In ICALP’10 (1), pages 312–323, 2010.

[13] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas.
Single-ISA heterogeneous multi-core architectures for multithreaded workload per-
formance. In ISCA’04, pages 64–75, 2004.

[14] R. Merritt. Cpu designers debate multi-core future, February 2008. EE Times.

[15] T. Y. Morad, U. C. Weiser, A. Kolodnyt, M. Valero, and E. Ayguadé. Perfor-
mance, power efficiency and scalability of asymmetric cluster chip multiprocessors.
Computer Architecture Letters, 5:14–17, 2006.

[16] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.
In FOCS’95, pages 374–382, 1995.

3


