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Agenda

I Introduction to Approximation

I A new problem: scheduling
I Complexity analysis

Studying two variants
I A path for discussing the various aspects of approximation



Some NP-complete problems

SAT

3SAT

CLIQUE

IndSet VCover

MAX-2SATHPath

HCycle

SubsetSum

2Partition

3Partition

BinPacking



Dealing with NP-hard (optimization) problems

There are multiple ways to solve a NP-hard problem...

I exact algorithms
I exact optimal solution but non-polynomial complexity
I efficient for small instances
I methodology: dynamic programming, branch-and-bound,

pseudo-polynomial algorithms

I study special cases
I could be polynomially solvable
I examples: 2-SAT

I heuristics
I non-optimal solution in polynomial time
I without guarantees but good performance in practice

I randomized algorithms
I polynomial-time complexity
I produce the optimal with high probability



Dealing with NP-hard (optimization) problems

Another –trade-off– solution is the following:

I exact algorithms

I study special cases

I approximation algorithms
I non-optimal solution
I running in polynomial time
I theoretical worst case guarantees:

the solution of the algorithm is not too far from the optimal

I heuristics

I randomized algorithms



Approximation ratio

I consider a problem Π and an algorithm A for solving this problem

I OPTI : the objective value of an optimal solution for the instance I
of the problem Π

I SOLI : the objective value of the solution of our algorithm A for the
instance I of the problem Π

approximation ratio (for a minimization problem)

ρ = max
I∈Instances

{
SOLI
OPTI

}

I for each instance I: OPTI ≤ SOLI ≤ ρ ·OPTI
I ρ > 1
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Approximation ratio

approximation ratio (for a maximization problem)

ρ = max
I∈Instances

{
OPTI
SOLI

}

I for each instance I: OPTI ≥ SOLI ≥ 1
ρ ·OPTI = ρ′ ·OPTI

I ρ > 1, ρ′ < 1



Case study on scheduling



Scheduling on parallel machines

Input: a set J of n jobs, a set M of m identical machines, a
processing time pj ∈ N+ for each job Jj ∈ J , and a
positive integer Cmax

Question: is there a schedule of all jobs on the machines such that
no machine executes two jobs at the same time and all
jobs are completed before time Cmax ?

I all jobs are available at time zero

I Cj : completion time of job Jj
I Cmax = max

Jj∈J
{Cj}

I optimization version: minimize the maximum completion time over
all jobs (makespan or schedule’s length)

I denoted in short by: P || Cmax
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Three-field notation for scheduling: α | β | γ

α: machine environment
I 1: single machine
I P : identical parallel machines
I P2: two identical parallel machines
I Q: related parallel machines
I R: unrelated parallel machines

β: jobs characteristics / constraints
I rj : release date of Jj
I pmtn: preemptions and migrations are allowed, dup duplication
I prec: precedence constraints
I wj : weight implying priority or pj processing times of Jj

γ: objective
I Cmax = max

j∈J
{Cj}: schedule’s length or makespan

I
∑
Cj : average completion time

I Fmax = max
j∈J
{Cj − rj}: maximum flow-time

I

∑
Fj =

∑
j∈J

(Cj − rj): average flow-time
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Gantt chart
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I J2 is non-preemptively executed (p2 = 4)

I J3 is preempted (p3 = 8)

I J1 is preempted and migrated (p1 = 9)

I makespan: Cmax = C10 = 14



Related questions

I P | pmtn | Cmax: polynomial or NP-complete?

I P2 || Cmax: polynomial or NP-complete?

I P2 | pj = 1 | Cmax: polynomial or NP-complete?

I P2 | prec | Cmax: polynomial or NP-complete?

I P3 || Cmax: polynomial or NP-complete?

I P3 | pj = 1 | Cmax: polynomial or NP-complete?

I P || Cmax: polynomial or NP-complete?
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Analysis of two scheduling problems

I P || Cmax

I P2 | prec | Cmax



P || Cmax: complexity analysis

I P2 || Cmax is weakly NP-complete by a straight forward reduction
from 2Partition

I Thus, P || Cmax is also NP-complete (in the weak sense)
since P2 || Cmax is a particular sub-problem

I Can we expect a more precise result?

Yes!
It is NP-complete in the strong sense.
We will show this result by a reduction from 3-Partition:
3-Partition ≤P P || Cmax
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Proof of the reduction

3-Partition

Input: A positive integer B and a set J of 3n integers denoted
by pj with values in the interval [B/4, B/2] and
Σj∈J pj = n ·B

Question: is there a partition into n multi-sets (each containing
exactly 3 integers) such that the integers within each set
sums up to B?



Transformation

Consider an instance of 3-Partition < B,J >
we define an instance of P || Cmax as follows:

I m =| J | /3
I For each item j of J ,

define one task whose processing time is pj
I Cmax = B



Proof

We prove now that an instance of 3-Partition is positive iff the
transformed instance for P || Cmax is positive

(⇒) Start by a positive instance of 3-Partition.
We assign each of these sets to one machine,
the makespan is B, thus, the instance is positive.

(⇐) Assume now that the instance of P || Cmax is positive.

I Since Σj∈J = n, each of the m machines has a load
of at least B in this schedule.

I Thus, partitioning the numbers into sets
corresponding to the sets of tasks delivers a partition
as required.

I It is a positive instance of 3-Partition as well.



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

List Scheduling (LS) [Graham]

I consider the jobs in an arbitrary order, J1, J2, . . . , Jn
I each time a machine becomes idle, schedule on it the first

non-scheduled job according to the above order

time

M5

M4

M3

M2

M1 J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11



P || Cmax: a first approximation algorithm

I how to calculate the objective function of the optimal solution?
I we cannot (because the problem is NP-complete...)

I use estimations (lower bounds): OPT ≥ LB

SOL ≤ ρ · LB ≤ ρ ·OPT

I what lower bounds can we use for P || Cmax ?

I total load:

Load =
1

m

∑
Jj∈J

pj ≤ OPT

I maximum processing time:

pmax = max{pj | Jj ∈ J } ≤ OPT
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P || Cmax

Theorem

List Scheduling achieves an approximation ratio of 2− 1
m .

Questions

I can we improve the analysis?

I is there a better approximation algorithm?
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P || Cmax: can we improve the analysis of LS?

I No!

I consider the following instance
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P || Cmax: a refined algorithm

Longest Processing Time (LPT)

1: consider the jobs in non-increasing order of their processing times,
i.e., p1 ≥ p2 ≥ . . . ≥ pn

2: each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

Analysis

I Jk: the job that completes last which is assigned to Mi

I if Jk is the only job on its machine

I Jk = J1

I Mi = M1

I LPT creates the optimal
schedule with
Cmax = p1 = pmax

Mm

...

M2

M1 Jk = J1
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P || Cmax: a refined algorithm

I if there are at least two jobs in Mi

I k ≥ m+ 1 and pk ≤ pm+1 (due to LPT rule)

I there are at least m+ 1 jobs

I in the optimal solution: there is a machine to which are assigned at
least two jobs in {J1, J2, . . . , Jm+1}

I OPT ≥ 2pm+1

I as in LS:

Cmax ≤ 1

m

∑
Jj 6=Jk

pj + pk ≤
1

m

∑
Jj

pj +
m− 1

m
pk

≤ Load+
m− 1

m
pm+1 ≤ OPT +

m− 1

m
· OPT

2

≤
(

3

2
− 1

2m

)
OPT

I Can we provide a better analysis of LPT? See the Lab. session of
today.
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P2 | prec | Cmax

This is an optimization problem.
Let consider the decision version.

I Definition

I Complexity

I Approximation



P2 | prec | Cmax

Input: a set J of n jobs, 2 identical machines, a processing time
pj ∈ N+ for each job Jj ∈ J , a directed graph
G = (V,E) describing precedence relations between jobs,
and a positive integer Cmax

Question: is there a schedule of all jobs on the two machines s.t.
(i) no machine executes two jobs at the same time,
(ii) for each two jobs Jj and Jj′ , if there is an arc
(Jj , Jj′), then Jj′ cannot start its execution before the
completion of Jj , and
(iii) all jobs are completed before time Cmax ?

J1

J2

J3

J4

J5 J6

M2

M1 J2

J5

M2

M1 J2

J5



Compexity of P2 | prec | Cmax

I P2 | prec | Cmax is NP-complete as generalization of P2 || Cmax

I however, in the weak sense

I We will prove that it is also strongly NP-complete

I P | prec | Cmax is strongly NP-complete
I as generalization of P2 | prec | Cmax



Compexity of P2 | prec | Cmax

I P2 | prec | Cmax is NP-complete as generalization of P2 || Cmax

I however, in the weak sense

I We will prove that it is also strongly NP-complete

I P | prec | Cmax is strongly NP-complete
I as generalization of P2 | prec | Cmax



Compexity of P2 | prec | Cmax

I P2 | prec | Cmax is NP-complete as generalization of P2 || Cmax

I however, in the weak sense

I We will prove that it is also strongly NP-complete

I P | prec | Cmax is strongly NP-complete
I as generalization of P2 | prec | Cmax



Complexity of P2 | prec | Cmax

Let prove that the problem is strongly NP-complete.
What can be a reference problem?

Reduction from 3-Partition

The idea is:

I to construct an adequate graph

I to relate its execution to successive equal-sized intervals

Exercise: write the detailed proof.
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Idea of the reduction

Let consider the following gadget:

We concatenate n− 1 such gadgets:

Its execution creates n idle intervals of length B where 3n remaining
tasks will be scheduled according to an instance of 3-Partition.



Reduction

3-Partition

Input: A positive integer B and a set J of 3n integers denoted
by pj with values in the interval [B/4, B/2] and
Σj∈J pj = n ·B

Question: is there a partition into n multi-sets (each containing
exactly 3 integers) such that the integers within each set
sums up to B?



Transformation

The 3n integers of 3-Partition remain the same, they correspond to
independent tasks.

The transformed instance adds the previous precedence graph.

Cmax = n ·B + n− 1



Proof

3-Partition ≤P P2 | prec | Cmax

I (⇒)
This is the easy part since the solution of 3-Partition fits
perfectly into the n intervals.
Thus, the schedule is valid and optimal.

I (⇐)

I The makespan of a solution of P2 | prec | Cmax is n ·B + n− 1 and
there is no other solution than the schedule with the previous shape.

I Thus, the 3n independent tasks should be scheduled into the n
intervals of length B that is a solution of 3-Partition



P | prec | Cmax: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed
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P | prec | Cmax: an approximation algorithm

full

M3
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I full intervals bounded by total load

I non-full intervals: there is a path in the
precedence graph covering them
(J1 → J5 → J9)

I OPT ≥ maximum path
(known as critical path)
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P | prec | Cmax: an approximation algorithm

Analysis:

Cmax ≤ Load + Critical Path ≤ 2 ·OPT

I this ratio is tight (we cannot improve the analysis)

I there is no algorithm for P | prec | Cmax with approximation ratio
smaller than 2 [Svensson 2007]

I how to show in-approximability results?
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Gap reductions

I Π1: a decision problem

I Π2: a minimization problem

I f , α: two functions

A gap-introducing reduction transforms an instance I1 of Π1 to an
instance I2 of Π2 such that

I if I1 has a solution, then OPT (I2) ≤ f(I2)

I if I1 has no solution, then OPT (I2) > α(|I2|) · f(I2)

I usage
I Π1: an NP-complete problem
I Π2: our problem
I α: the gap

I meaning: based on the value of the solution of our problem we can
decide Π1 which is NP-complete (contradiction)
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Application to BinPacking

Bin-Packing

Input: a set of items A, a size s(a) for each a ∈ A, a positive
integer capacity C, and a positive integer k

Question: is there a partition of A into disjoint sets A1, A2, . . . , Ak
such that the total size of the elements in each set Aj
does not exceed the capacity C, i.e.,

∑
a∈Aj

s(a) ≤ C ?

Let us first prove that BinPacking is in NP-complete.
This is easy by a simple reduction from 2Partition.



Application to BinPacking

BinPacking can not be approximated by a factor better than 3/2

The proof is by contradiction:

I assume by contradiction that it can be approximated by ρ < 3/2

I apply the gap reduction to a positive instance of < A,C, 2 >

I As the number of bins is an integer, the approximation also leads to
an integer value < 3

I Thus, solving this problem corresponds to solve 2Partition in
polynomial time, unless P = NP
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