Denis Trystram
MoSIG1 and M1Info — University Grenoble-Alpes

March, 2021

» Introduction to Approximation
» A new problem: scheduling
» Complexity analysis
Studying two variants
» A path for discussing the various aspects of approximation

SAT

HPATH SUBSETSUM 3PARTITION
1 1

HCYCLE INDSET VCOVER 2PARTITION BINPACKING

Dealing with NP-HARD (optimization) problems
There are multiple ways to solve a NP-hard problem...

» exact algorithms

» exact optimal solution but non-polynomial complexity
» efficient for small instances

» methodology: dynamic programming, branch-and-bound,
pseudo-polynomial algorithms
» study special cases
» could be polynomially solvable
» examples: 2-SAT
» heuristics
» non-optimal solution in polynomial time
» without guarantees but good performance in practice
» randomized algorithms

» polynomial-time complexity
» produce the optimal with high probability

Dealing with NP-HARD (optimization) problems

Another —trade-off— solution is the following:

> exact algorithms
» study special cases

» approximation algorithms
» non-optimal solution
> running in polynomial time
> theoretical worst case guarantees:
the solution of the algorithm is not too far from the optimal

» heuristics

v

randomized algorithms

» consider a problem II and an algorithm A for solving this problem

» OPTry: the objective value of an optimal solution for the instance I
of the problem II

» SOLj: the objective value of the solution of our algorithm A for the
instance I of the problem II

Approximation ratio

» consider a problem IT and an algorithm A for solving this problem

» OPTr: the objective value of an optimal solution for the instance I
of the problem II

» SOL;j: the objective value of the solution of our algorithm A for the
instance I of the problem II

approximation ratio (for a minimization problem)

_ . [SOLs
p_IeInstaances OPT]

» for each instance I: OPT; < SOL; < p-OPT;
> p>1

OPT; }

P= Ielrrgtae‘:}rfces { SOL[

» for each instance I: OPT; > SOL; > % -OPT; = p' - OPTy
»p>1,p0 <1

Scheduling on parallel machines

Input:

Question:

a set J of n jobs, a set M of m identical machines, a
processing time p; € NT for each job J; € 7, and a
positive integer Chhax

is there a schedule of all jobs on the machines such that
no machine executes two jobs at the same time and all
jobs are completed before time Clax ?

Scheduling on parallel machines

Input: a set J of n jobs, a set M of m identical machines, a
processing time p; € NT for each job J; € 7, and a
positive integer Chhax

Question: is there a schedule of all jobs on the machines such that
no machine executes two jobs at the same time and all
jobs are completed before time Clax ?

» all jobs are available at time zero
» C;: completion time of job J;
> Chax = max{C,

max JjEJ{]}

» optimization version: minimize the maximum completion time over
all jobs (makespan or schedule’s length)

Scheduling on parallel machines

Input: a set J of n jobs, a set M of m identical machines, a
processing time p; € NT for each job J; € 7, and a
positive integer Chhax

Question: is there a schedule of all jobs on the machines such that

no machine executes two jobs at the same time and all
jobs are completed before time Clax ?

» all jobs are available at time zero

» C;: completion time of job J;

> Croax = gg{cj}

» optimization version: minimize the maximum completion time over
all jobs (makespan or schedule’s length)

» denoted in short by: P || Cinax

«: machine environment

» 1: single machine

P: identical parallel machines

P2: two identical parallel machines
Q: related parallel machines

R: unrelated parallel machines

vy vy vy

Three-field notation for scheduling: « | 8 | v

«a: machine environment
» 1: single machine
P: identical parallel machines
P2: two identical parallel machines
Q: related parallel machines
R: unrelated parallel machines

vy vy vy

B: jobs characteristics / constraints
» r;: release date of J;
» pmtn: preemptions and migrations are allowed, dup duplication
» prec: precedence constraints
» w;: weight implying priority or p; processing times of J;

Three-field notation for scheduling: « | 8 | v

«a: machine environment
» 1: single machine
P: identical parallel machines
P2: two identical parallel machines
Q: related parallel machines
R: unrelated parallel machines

vy vy vy

B: jobs characteristics / constraints
» r;: release date of J;
» pmtn: preemptions and migrations are allowed, dup duplication
» prec: precedence constraints
» w;: weight implying priority or p; processing times of J;

~: objective
» Chax = mag{{Cj}: schedule’s length or makespan
Je

» > Cj: average completion time
> Fhax = mea?({Cj — 7} maximum flow-time
J

> ZFj = Z(Oj —r;): average flow-time
jeTq

Gantt chart

M, Jh \ Js |
§ M> Jo ‘ Je ‘ Jo ‘
5 M J3 ‘ Ji1 ‘ J3 ‘
E M Ju IR
Ms Js ‘ 2J10
01 2 3 4 é 6 7 8 9 1§0 11 11*2 13 14 15 time
04 OS C.Yl Cn‘)ax

Ja is non-preemptively executed (py = 4)
Js is preempted (p3 = 8)

Jp is preempted and migrated (p; = 9)
makespan: Chax = Ci9 = 14

» P | pmin | Chax: polynomial or NP-COMPLETE?

P | pmin | Ciyax: polynomial or NP-COMPLETE?

v

v

P2 || Cipax: polynomial or NP-COMPLETE?

v

P2 | pj =1 Cnax: polynomial or NP-COMPLETE?

v

P2 | prec | Ciax: polynomial or NP-COMPLETE?

P | pmin | Ciyax: polynomial or NP-COMPLETE?

v

v

P2 || Cipax: polynomial or NP-COMPLETE?

v

P2 | pj =1 Cnax: polynomial or NP-COMPLETE?

v

P2 | prec | Ciax: polynomial or NP-COMPLETE?

v

P3 || Cinax: polynomial or NP-COMPLETE?

v

P3| pj =1| Cmax: polynomial or NP-COMPLETE?

P | pmin | Ciyax: polynomial or NP-COMPLETE?

v

v

P2 || Cipax: polynomial or NP-COMPLETE?

v

P2 | pj =1 Cnax: polynomial or NP-COMPLETE?

v

P2 | prec | Ciax: polynomial or NP-COMPLETE?

v

P3 || Cinax: polynomial or NP-COMPLETE?

v

P3| pj =1| Cmax: polynomial or NP-COMPLETE?

v

P || Cinax: polynomial or NP-COMPLETE?

> P | Crax

» P2 | prec| Cpax

» P2 || Chax is weakly NP-complete by a straight forward reduction
from 2PARTITION

» Thus, P || Chax is also NP-complete (in the weak sense)
since P2 || Crax is a particular sub-problem

» P2 || Chax is weakly NP-complete by a straight forward reduction
from 2PARTITION

» Thus, P || Chax is also NP-complete (in the weak sense)
since P2 || Crax is a particular sub-problem

» Can we expect a more precise result?

P || Cax: complexity analysis

» P2 || Chax is weakly NP-complete by a straight forward reduction
from 2PARTITION

» Thus, P || Chax is also NP-complete (in the weak sense)
since P2 || Crax is a particular sub-problem

» Can we expect a more precise result?

Yes!

It is NP-complete in the strong sense.

We will show this result by a reduction from 3-PARTITION:
3-PARTITION <p P || Cinax

3-PARTITION

Input: A positive integer B and a set J of 3n integers denoted
by p; with values in the interval [B/4, B/2] and
Yjegpj =n-B
Question: is there a partition into n multi-sets (each containing
exactly 3 integers) such that the integers within each set
sums up to B?

Consider an instance of 3-PARTITION < B, J >
we define an instance of P || Cyax as follows:

»m=|J|/3
» For each item j of 7,
define one task whose processing time is p;

> Cmax =B

Proof

We prove now that an instance of 3-PARTITION is positive iff the
transformed instance for P || Cphax is positive

(=) Start by a positive instance of 3-PARTITION.
We assign each of these sets to one machine,
the makespan is B, thus, the instance is positive.
(<) Assume now that the instance of P || Cpax is positive.

» Since ¥c7 = n, each of the m machines has a load
of at least B in this schedule.

» Thus, partitioning the numbers into sets
corresponding to the sets of tasks delivers a partition
as required.

» It is a positive instance of 3-PARTITION as well.

List Scheduling (LS) [Graham]
» consider the jobs in an arbitrary order, Jy,J3,...,J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M
M3

Ms

J1

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M
M3

Ms

Jr |

Jo2

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M
M3

Ms

Jr |

Jo2

Js |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M,
Ms

Ms

Jr |

2|

Js |

Ji |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M,
Ms

Ms

Jr |

2|

Js |

Ji |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M,
Ms

Ms

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

My
M,
Ms

Ms

Jr |
2| Jo |
Js |
Ji |]
Js |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]

» consider the jobs in an arbitrary order, Ji, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

M,
Ms

Ms

Jr I
2| Jo |
Js |
Ji |]
Js |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]
» consider the jobs in an arbitrary order, Jy, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

M, Jr I
Mp 2| Jo |
M3 J3 ‘ Jo
M Ji I
M; Js |

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]
» consider the jobs in an arbitrary order, Jy, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

M, Jr I

Mp 2| Jo |

Ms Js \ Jo |
M Ji I

Ms Js ‘ J1o ‘

time

P || Cpax: a first approximation algorithm

List Scheduling (LS) [Graham]
» consider the jobs in an arbitrary order, Jy, Jo, ..., J,

» each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

M, Jr I

M Ja ‘ Js ‘ Ji1 ‘

Ms Js \ Jo |
M Ji I

Ms Js ‘ Jio ‘

time

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)

» use estimations (lower bounds): OPT > LB
SOL<p-LB

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)

» use estimations (lower bounds): OPT > LB
SOL<p-LB<p-OPT

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)

» use estimations (lower bounds): OPT > LB
SOL<p-LB<p-OPT

» what lower bounds can we use for P || Cpax ?

P || Cpax: a first approximation algorithm

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)

» use estimations (lower bounds): OPT > LB
SOL<p-LB<p-OPT

» what lower bounds can we use for P || Cinax ?
» total load:

1
L = — E i
oad p; < OPT
J; €T

P || Cpax: a first approximation algorithm

» how to calculate the objective function of the optimal solution?
» we cannot (because the problem is NP-COMPLETE...)
» use estimations (lower bounds): OPT > LB
SOL<p-LB<p-OPT

» what lower bounds can we use for P || Cinax ?
» total load:

1
Load = — i <
= Z p; < OPT
JeT
> maximum processing time:

Pmax = max{p; | J; € T} <OPT

time

time

» Ji: the job that completes last

P || Cpax: a first approximation algorithm

M, S \
Moy Jo | Jﬁ Ji1 ‘
Ms Js Jo \
My Ja J7
Ms Js Jr = Jio |
time
Pk

» Ji: the job that completes last

1
me < _— j
ws by,
Ji# Ik

P || Cpax: a first approximation algorithm

M,
M,
M;3

Ms

» Ji: the job that completes last

1
Cm b'e < - 1
a = Z Dj + Dk
Jj# Ik

Jr \
Jo | Js Ji1 ‘
J3 Jo ‘
Ju J7
Js Jr = Jio |
time
Pk

P || Cpax: a first approximation algorithm

M S | s |
M; B Jo I
Ms Js | Jo \
My Ja | J7 ‘
Ms Js Jr = Jio |
time
Pk

» Ji: the job that completes last

1 1 m—1
Cmax < - Z P+ Pk = EijﬂL Pk
Ji# Tk Jj

P || Cpax: a first approximation algorithm

M S | s |

M; B Jo I

Ms Js | Jo \

My Ja | J7 ‘

Ms Js Jr = Jio |

time
Pk
» Ji: the job that completes last
Cmax < % > pitm = %ij‘Fm?;lpk
Ji# Ik J;
< Load + "~ 1pmax

P || Cpax: a first approximation algorithm

M S | s |
M; B Jo I
Ms Js | Jo \
My Ja | J7 ‘
Ms Js Jr = Jio |
time
Pk
» Ji: the job that completes last
1 1 m—1
Cm x < — j = j
wo S Y it = —) Pt Pk
Ji# Ik J;
m—1 m—1
< Load + Pmax < OPT + ——OPT
m m

P || Cpax: a first approximation algorithm

M S | s |
M; B Jo I
Ms Js | Jo \
My Ja | J7 ‘
Ms Js Jr = Jio |
time
Pk

» Ji: the job that completes last

1 1 m—1
Cmax < - Z P+ Pk = EijﬂL Pk
Ji £y J;
-1 -1 1
< Load+ " Zp... < OPT+ " ~0oPT = (2—
m

m m

) OPT

List Scheduling achieves an approximation ratio of 2 — %

List Scheduling achieves an approximation ratio of 2 — %

Questions
» can we improve the analysis?

> is there a better approximation algorithm?

» Nol!

P || Cihax: can we improve the analysis of LS?

» No!

» consider the following instance

» n=m(m—1)+1 jobs

> pr=p2=...=Pmm-1) =1 and Puim-_1)41 =m
My J1 Jmt1 Jm(m71)+1
My | J2 | Im+2

LS . - - -
Mm, Jm ‘ J2m ‘ }’m(mfli

P || Cihax: can we improve the analysis of LS?

» No!

» consider the following instance

LS

OPT

» n=m(m—1)+1 jobs

> P1=pP2 = ... = Pm(m-1) = 1 and Pm(m—-1)41 =M
M| Ji | Jms1 Im(m—1)+1
Mz | Jo | Jm+2

M| T [T | Jmna]

My Jm(m=1)+1

I N I A

P S N N N

P || Cihax: can we improve the analysis of LS?

» No!

» consider the following instance

LS

OPT

» n=m(m—1)+1 jobs

> P1=pP2 = ... = Pm(m-1) = 1 and Pm(m—-1)41 =M
M| Ji | Jms1 Im(m—1)+1
Mz | Jo | Jm+2

M| T [T | Jmna]

My Jm(m=1)+1

I N I A

P S N O B 2

2m — 1

Longest Processing Time (LPT)

1: consider the jobs in non-increasing order of their processing times,
e, p1=>p2>...2pn

2: each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

P || Chax: a refined algorithm

Longest Processing Time (LPT)
1: consider the jobs in non-increasing order of their processing times,
e, p1 >p2>...2> Py

2: each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

Analysis

» Ji: the job that completes last which is assigned to M;

P || Chax: a refined algorithm

Longest Processing Time (LPT)
1: consider the jobs in non-increasing order of their processing times,
e, p1 >p2>...2> Py

2: each time a machine becomes idle, schedule on it the first
non-scheduled job according to the above order

Analysis

» Ji: the job that completes last which is assigned to M;

» if Jj is the only job on its machine

» o= M, Jp = J1
» M, = M Mo ‘
» LPT creates the optimal

schedule with M, ‘

Cmax = P1 = Pmax

» if there are at least two jobs in M;

>

>

>

k>m+1 and pi < pm41 (due to LPT rule)
there are at least m + 1 jobs

in the optimal solution: there is a machine to which are assigned at
least two jobs in {J1,J2,. .., Jms1}

OPT > 2pmi1
as in LS:

1 1 m—1
Cmax S E Z Pj +pk S E ij + m Pk
Jj# Ty Jj

» if there are at least two jobs in M;

>

>

>

k>m+1 and pi < pm41 (due to LPT rule)
there are at least m + 1 jobs

in the optimal solution: there is a machine to which are assigned at
least two jobs in {J1,J2,. .., Jms1}

OPT > 2pmi1
as in LS:
1 1 m—1
Cmax S E Z pg‘l’pk S EZP]"’ m Pk
Jj# Ty Jj
< Load + m= DPm+1
m

» if there are at least two jobs in M;
» k>m+1 and pr < pm41 (due to LPT rule)

> there are at least m + 1 jobs

> in the optimal solution: there is a machine to which are assigned at
least two jobs in {J1,J2,. .., Jms1}

> OPT > 2pm+1
» asin LS:

1 1 m—1
Cmax S E Z Pj +pk S E ij + m Pk
Jj# Ty Jj

1 PT
s < opry M1 OPT
m 2

< Load +

» if there are at least two jobs in M;

>

>

>

k>m+1 and pi < pm41 (due to LPT rule)
there are at least m + 1 jobs

in the optimal solution: there is a machine to which are assigned at
least two jobs in {J1,J2,. .., Jms1}

OPT > 2pmi1
as in LS:

1 1 m—1
Cmax >~ E Z Pj +pk S E ij + m Pk
Jj# Ty Jj

N

1 PT
1pm+1 < OPT"FT O—

2
<§ _ L) OPT
2 m

AN
~
)
Q
IS8
+

P || Chax: a refined algorithm

> if there are at least two jobs in M;

>

>

>

k>m+1 and pi < pmt1 (due to LPT rule)
there are at least m + 1 jobs

in the optimal solution: there is a machine to which are assigned at

least two jobs in {J1, J2, ..., Jm+1}
OPT > 2pmi1
as in LS:
Crmax < ﬂlljj;kpj +pr < ;Z};Pj + mm 1pk
< Load+ lpmﬂ < OPT+ -1 Ol;’T

3 1

» Can we provide a better analysis of LPT? See the Lab. session of
today.

This is an optimization problem.
Let consider the decision version.

» Definition
» Complexity

» Approximation

P2 | prec | Ciax

Input: a set J of n jobs, 2 identical machines, a processing time
p; € N for each job J; € J, a directed graph
G = (V, E) describing precedence relations between jobs,
and a positive integer Ciax

Question: is there a schedule of all jobs on the two machines s.t.
(i) no machine executes two jobs at the same time,
(ii) for each two jobs J; and Jj/, if there is an arc
(Jj,Jjr), then Jjs cannot start its execution before the
completion of .J;, and
(iii) all jobs are completed before time Cryax ?

g [TV
/
Ja M, J
/ \J5>J6 PN

Jl\ / M, ‘ J2 ‘

s v,]

» P2 | prec| Cpax is NP-COMPLETE as generalization of P2 || Cpax

» however, in the weak sense

» P2 | prec| Cpax is NP-COMPLETE as generalization of P2 || Cpax

» however, in the weak sense

» We will prove that it is also strongly NP-COMPLETE

» P2 | prec| Cpax is NP-COMPLETE as generalization of P2 || Cpax

» however, in the weak sense
» We will prove that it is also strongly NP-COMPLETE

» P | prec| Cpax is strongly NP-COMPLETE
> as generalization of P2 | prec | Cimax

Let prove that the problem is strongly NP-COMPLETE.
What can be a reference problem?

Let prove that the problem is strongly NP-COMPLETE.
What can be a reference problem?

Reduction from 3-PARTITION

The idea is:
» to construct an adequate graph
> to relate its execution to successive equal-sized intervals

Exercise: write the detailed proof.

Let consider the following gadget:

We concatenate n — 1 such gadgets:

AN AN
e

Its execution creates n idle intervals of length B where 3n remaining
tasks will be scheduled according to an instance of 3-PARTITION.

Reduction

Pl - Tl
| T o

3-PARTITION

Input: A positive integer B and a set J of 3n integers denoted
by p; with values in the interval [B/4, B/2] and
Yjegpj=n-B

Question: is there a partition into n multi-sets (each containing
exactly 3 integers) such that the integers within each set
sums up to B?

The 3n integers of 3-PARTITION remain the same, they correspond to
independent tasks.

The transformed instance adds the previous precedence graph.

Chax=n-B+n-—1

Proof

3-PARTITION <p P2 | prec| Cpax

> (=)
This is the easy part since the solution of 3-PARTITION fits
perfectly into the n intervals.
Thus, the schedule is valid and optimal.

> (<)

» The makespan of a solution of P2 | prec | Cmax isn- B +n —1 and
there is no other solution than the schedule with the previous shape.

» Thus, the 3n independent tasks should be scheduled into the n
intervals of length B that is a solution of 3-PARTITION

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)
each time a machine becomes idle, schedule on it any ready job,

i.e. a job whose predecessors are already completed

M,
Mo

Ja

J3

—— Js
7

J4/J8
/

J5*>J9

/DN

s

time

P | prec| Ciax: an approximation algorithm
List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed

Ja

J3

—— Js
7

J4/J8
/

J5*>J9

/DN

m[| k]
Mo

time

P | prec| Ciax: an approximation algorithm
List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed

Ja

J3

—— Js
7

J4/J8
/

J5*>J9

/DN

M| & B |
M2 JB ‘
M3

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)
each time a machine becomes idle, schedule on it any ready job,

i.e. a job whose predecessors are already completed

My
Mo

Ja

J3

—— Js
7

J4/J8
/

J5*>J9

/DN

Ji J |

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)
each time a machine becomes idle, schedule on it any ready job,

i.e. a job whose predecessors are already completed

My
Mo

Ja

N

—Je
7.

J5*>Jg

Ji 2|]

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)
each time a machine becomes idle, schedule on it any ready job,

i.e. a job whose predecessors are already completed

My
Mo

Ja

N

—Je
7.

J5*>Jg

Ji 2|]

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed

Ja

N

—Je
7.

J5*>Jg

M| & B 5]
M, J3 ‘ Js
Ms Jio | e

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed

Ja

N

—Je
7.

J5*>Jg

M| & B 0 | Js |
M, J3 ‘ Js
Ms Jio | e

time

P | prec| Ciax: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job,
i.e. a job whose predecessors are already completed

Ja

N

—Je
7.

J5*>Jg

M| & | 5 || 0
M, J3 ‘ Js
Ms Jio | e

time

P | prec| Ciax: an approximation algorithm

M
Mo
M3

full

' full

J1

s Js ‘ Jo

J3

' Jo '

Ja

J7

» full intervals bounded by total load

P | prec| Ciax: an approximation algorithm

M
Mo
M3

full

' 1 full

J1

e
&

Jo

J3

Ja

» full intervals bounded by total load

» non-full intervals: there is a path in the
precedence graph covering them
(Jl — J5 — Jg)

» OPT > maximum path
(known as critical path)

Analysis:

Cmax < Load + Critical Path < 2-OPT

Analysis:

Cmax < Load + Critical Path < 2-OPT

» this ratio is tight (we cannot improve the analysis)

Analysis:

Cmax < Load + Critical Path < 2-OPT

» this ratio is tight (we cannot improve the analysis)

» there is no algorithm for P | prec | Cax with approximation ratio
smaller than 2 [Svensson 2007]

Analysis:

Cmax < Load + Critical Path < 2-OPT

» this ratio is tight (we cannot improve the analysis)

» there is no algorithm for P | prec | Cax with approximation ratio
smaller than 2 [Svensson 2007]

» how to show in-approximability results?

» II;: a decision problem

» II5: a minimization problem

» f, a: two functions

|
A gap-introducing reduction transforms an instance I; of II; to an
instance I5 of Il such that

» if I has a solution, then OPT(I5) < f(I5)
» if I; has no solution, then OPT'(I3) > a(|l2]) - f(I2)

Gap reductions

» II;: a decision problem
» II;: a minimization problem

» f, a: two functions

A gap-introducing reduction transforms an instance I; of II; to an
instance I of Il such that

» if I; has a solution, then OPT(I3) < f(I2)
» if I; has no solution, then OPT (1) > a(|I2|) - f(I2)

> usage
» II;: an NP-COMPLETE problem
» Il5: our problem
> «: the gap
» meaning: based on the value of the solution of our problem we can
decide II; which is NP-COMPLETE (contradiction)

Application to BINPACKING

BIN-PACKING

Input: a set of items A, a size s(a) for each a € A, a positive
integer capacity C, and a positive integer k
Question: is there a partition of A into disjoint sets A1, Ao, ..., Ay
such that the total size of the elements in each set A;
does not exceed the capacity C, i.e., ZaeAj s(a) <C7?

Let us first prove that BINPACKING is in NP-COMPLETE.
This is easy by a simple reduction from 2PARTITION.

|
BINPACKING can not be approximated by a factor better than 3/2

|
BINPACKING can not be approximated by a factor better than 3/2

The proof is by contradiction:
» assume by contradiction that it can be approximated by p < 3/2
» apply the gap reduction to a positive instance of < A,C,2 >

Application to BINPACKING

BINPACKING can not be approximated by a factor better than 3/2

The proof is by contradiction:
» assume by contradiction that it can be approximated by p < 3/2
» apply the gap reduction to a positive instance of < A,C,2 >
» As the number of bins is an integer, the approximation also leads to
an integer value < 3
» Thus, solving this problem corresponds to solve 2PARTITION in
polynomial time, unless P = NP

