Fundamental Computer Science Training on some NP-complete problems

Denis Trystram (inspired by Giorgio Lucarelli)

March, 2020

SOME NP-COMPLETE problems

- vertex cover
- ► 2-Partition
- ► Knapsack

Vertex cover

Input: a graph G = (V, E) and an integer j.

Question: is there a subset of the vertices whose cardinality is less than j that covers all the edges of G?

Example 1: initial graph

Example 2: a set cover

- Generate non deterministically a set of vertices.
- Verify that these vertices cover all the edges by a polynomial-time algorithm.

We will show that 3SAT α VC.

Let consider an instance of 3SAT: $E_1 \wedge E_2 \dots \wedge E_k$ (1) where $E_i = x_{i,1} \vee x_{i,2} \vee x_{i,3}$

Let denote by p_q (for q = 1 to l) the set of propositional variables in (1)

Set of vertices

- A pair of vertices (p_q, \bar{p}_q) for each of the propositional variable
- A triple of vertices associated to each clause E_i

Set of vertices

- ▶ A pair of vertices (p_q, \bar{p}_q) for each of the propositional variable
- A triple of vertices associated to each clause E_i

Number of vertices: 2l + 3k

Set of edges

- An edge between each pair of vertices (p_q, \bar{p}_q)
- ▶ An edge between each pair $(x_{i,1}, x_{i,2})$, $(x_{i,1}, x_{i,3})$ and $(x_{i,2}, x_{i,3})$
- one edge between each $x_{i,j}$ and p or \bar{p} depending of the literal

Set of edges

- ▶ An edge between each pair of vertices (p_q, \bar{p}_q)
- \blacktriangleright An edge between each pair $(x_{i,1},x_{i,2})$, $(x_{i,1},x_{i,3})$ and $(x_{i,2},x_{i,3})$
- ▶ one edge between each $x_{i,j}$ and p or \bar{p} depending of the literal

Number of edges:

l + 6k

Set of edges

- ▶ An edge between each pair of vertices (p_q, \bar{p}_q)
- \blacktriangleright An edge between each pair $(x_{i,1},x_{i,2})$, $(x_{i,1},x_{i,3})$ and $(x_{i,2},x_{i,3})$
- ▶ one edge between each $x_{i,j}$ and p or \bar{p} depending of the literal

Number of edges:

l + 6k

the constant j = l + 2k

Example

 $(p_2 \vee \bar{p}_1 \vee p_4) \land (\bar{p}_3 \vee \bar{p}_2 \vee \bar{p}_4)$

Draw the graph.

Example: the corresponding graph

Write the detailed reduction.

Write the detailed reduction.

Goal

show that the instance of 3SAT is satisfiable iff the graph generated by the reduction is a vertex covering.

Let assume that the boolean expression is satisfiable.

This means that all the clauses are true.

The vertex cover is defined by this interpretation function:

- \blacktriangleright the vertices p_q if the interpretation function is equal to 1 and \bar{p}_q otherwise.
- two vertices among the three into a triangle, such that the interpretation function leads to 1 for the not chosen vertex¹

The size of this covering is l + 2k.

We verify easily that it covers all the edges.

Assume now that the graph has a covering of size l + 2k. We have to show that the corresponding boolean expression (3SAT) is satisfiable.

Assume now that the graph has a covering of size l + 2k. We have to show that the corresponding boolean expression (3SAT) is satisfiable.

- \blacktriangleright such a covering should contain at least one vertex among the pair p_i and \bar{p}_i
- \blacktriangleright it should also contain two vertices among $x_{i,1},\,x_{i,2}$ and $x_{i,3}$ in order to cover the triangles
- it can not contain other vertices

2Partition

Instance : n integers denoted by n_i and an integer (even) $S = \sum_{1 \le i \le n} n_i$. **Question** : Does it exist a partition of these integers into two subsets A_1 et A_2 such that $\sum_{i \in A_1} n_i = \sum_{i \in A_2} n_i$?