JOSEPHUS PROBLEM AND MASTER THEOREM Denis TRYSTRAM Training session Maths for Computer Science – MOSIG 1 – 2018

1 Josephus' problem

The problem comes from an old story reported by Flavius Josephus during the Jewish-Roman war in the first century. The legend reports that Flavius was among a band of 41 rebels trapped in a cave by the roman army. Preferring suicide to capture, the rebels decided to form a circle and proceeding around to kill every second remaining person until no one was left. As Josephus had some skills in Maths and wanted none of this suicide non-sense, he quickly calculated where he should stand in the circle in order to stay alive at the end of the process.

Definition. Given n successive numbers in a circle. The problem is to determine the *survival number* (denoted by J(n)) in the process of removing every second remaining number starting from 1 (see figure 1).

Figure 1: Initial situation for the Josephus process.

In particular, we are going to determine if there exists a closed formula. Guessing the answer sounds not obvious. We need to better understand the progression.

Property 1. J(n) is odd

We called *round*, the set of steps to come back at a given position in the circle. Starting at 1, the first round is completed after $\lceil \frac{n}{2} \rceil$ steps. Then, again half of the of the remaining numbers are removed in the second round and so on.

How many rounds do we have for determining J(n)?

Property 2. (even numbers) Show J(2n) = 2J(n) - 1

Deduce $J(2^m) = 1$ for all m. Let us turn to odd numbers.

Property 3. (odd numbers) J(2n + 1) = 2J(n) + 1

Show **Property 4.** $J(2^m + k) = 2k + 1$

We can even go one step further with this problem by remarking that powers of 2 play an important role. Let us use the radix 2 representation of n and J(n):

$$n = \sum_{j=0}^{j=m} b_j \cdot 2^j = b_m \cdot 2^m + b_{m-1} \cdot 2^{m-1} + \dots + b_1 \cdot 2 + b_0$$

2 Master Theorem

The cost analysis of the divide-and-conquer paradigm leads to the following recurrence equation. We assume that n is a power of b (in other words, it can be perfectly divided by b until reaching the value 1. $a \ge 1$ et b > 1.

•
$$F(n) = \Theta(1)$$
 if $n \le n_0$

•
$$F(n) = a.F(\frac{n}{b}) + f(n)$$

We give below the general formulation for solving this equation:

1. if
$$f(n) \in \mathcal{O}(n^{\log_b a - \epsilon})$$
 then $F(n) \in \Theta(n^{\log_b a})$

- 2. if $f(n) \in \Theta(n^{\log_b a})$ then $F(n) \in \Theta(n^{\log_b a} \log(n))$
- 3. if $f(n) \in \Omega(n^{\log_b a + \epsilon})$ and if $a.f(n/b) \le cf(n)$ for some constant c < 1 then, $F(n) \in \Theta(f(n))$

where ϵ is a positive real number.

2.1 Analysis of regular (well-balanced) cases

- F(1) = 1
- $F(n) = a.F(\frac{n}{b}) + c$ (c is a positive constant)

Solve this problem for any (a, b).

- F(1) = 1
- $F(n) = a.F(\frac{n}{b}) + n$

Solve this problem for a = b = 2

- F(1) = 1
- $F(n) = a.F(\frac{n}{b}) + f(n)$

Solve this problem for a (positive) multiplicative function f defined on the successive powers of b.

Give an interpretation of the Master Theorem.