Lecture 1 – Maths for Computer Science

Denis TRYSTRAM Lecture notes MoSIG1

sept. 9, 2020

- 1 Sum of two consecutive triangular numbers
- 2 Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

Sum of two consecutive triangular numbers

The problem. Compute $\Delta_n + \Delta_{n-1}$

Computing the first ranks leads us to an evidence: $\Delta_1+\Delta_0=1,$ then, $3+1=4,\ 6+3=9,\ 10+6=16,\ 25,\ 36,\ ...$

It is *natural* to guess $\Delta_n = n^2$, which is easy provable by induction (or alternatively, directly using the expression

 $\Delta_n + \Delta_{n-1} = n + 2\Delta_{n-1}$ since $\Delta_n = n + \Delta_{n-1}$).

Sum of two consecutive triangular numbers

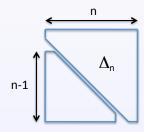
The problem. Compute $\Delta_n + \Delta_{n-1}$

Computing the first ranks leads us to an evidence: $\Delta_1+\Delta_0=1,$ then, $3+1=4,\ 6+3=9,\ 10+6=16,\ 25,\ 36,\ ...$

It is *natural* to guess $\Delta_n = n^2$, which is easy provable by induction (or alternatively, directly using the expression

 $\Delta_n + \Delta_{n-1} = n + 2\Delta_{n-1}$ since $\Delta_n = n + \Delta_{n-1}$).

This result can be directly obtained using a geometric pattern:



- 1 Sum of two consecutive triangular numbers
- 2 Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

- 1 Sum of two consecutive triangular numbers
- 2 Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

Four consecutive numbers

Let denote
$$P_n = n.(n+1).(n+2).(n+3)$$

The problem:

Study some properties of P_n

In particular, the two following properties:

1
$$P_n$$
 is equal to a square minus 1

2
$$P_n = n.(n+1).(n+2).(n+3)$$
 is divisible by 4!

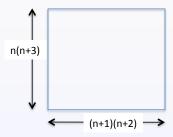
P(n) + 1 is a perfect square.

Let check at the first ranks: $P_2 = 2 \times 3 \times 4 \times 5 = 120 = 15 \times 8 = 11^2 - 1$ $P_3 = 3 \times 4 \times 5 \times 6 = 360 = 45 \times 8 = 19^2 - 1$ $P_4 = 4 \times 5 \times 6 \times 7 = 840 = 105 \times 8 = 29^2 - 1$

We propose a graphical proof.

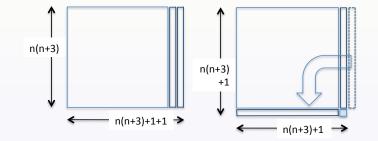
 \square Product of 4 consecutive numbers P_n

Compare the extreme product n(n+3) to the medium one (n+1)(n+2): $n(n+3) = n^2 + 3n$ and $(n+1)(n+2) = n^2 + 3n + 2$.



Lecture 1 - Maths for Computer Science

 \square Product of 4 consecutive numbers P_n



Thus, $P(n) = ((n.(n+3)+1)^2 - 1)^2$

$P_n = n.(n+1).(n+2).(n+3)$ is divisible by 4!

P(n) is divisible by 3 since there is at least one multiple of 3 in three (thus, four) consecutive products. We prove that it is also divisible by 8:

In the product P(n), there are exactly 2 even numbers: 2k and 2k + 2, thus their product is equal to: $2k.2(k + 1) = 4.k.(k + 1) = 8.\Delta_k$

As 3 and 8 have no common divisors, P(n) is divisible by their product 24.

- 1 Sum of two consecutive triangular numbers
- **2** Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

Square of odd numbers

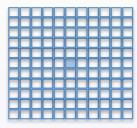
An intermediate result.

The problem:

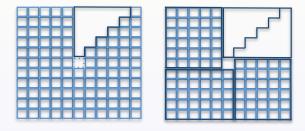
Show that the squares of odd numbers are multiples of 8 minus 1. Using a geometrical argument.

This is the case for $3^2 = 8 + 1$, $5^2 = 3 \times 8 + 1$, $7^2 = 6 \times 8 + 1$, etc.

The result can also easily be proven analytically as follows: $(2q+1)^2 = 4q^2 + 4q + 1 = 4q(q+1) + 1.$ As one of the consecutive numbers q and q+1 is even, we obtain: $(2q+1)^2 = 8k + 1.$ Squares of odds



└─ Squares of odds



└─ Squares of odds

At this point, we can establish a deeper link with triangular numbers.

Looking more carefully at the previous figure, we remark that each of the 8 quadrants is composed of a series of 1 unit square, followed by 2 unit squares and so on, up to q unit squares.

This can be easily proved by the relation: $\frac{(2q+1)^2-1}{8} = \frac{4q^2+4q+1-1}{8} = \frac{4q(q+1)}{8} = \Delta_q.$

- 1 Sum of two consecutive triangular numbers
- 2 Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

Tetrahedral numbers

The problem:

The sum of the Δ_n is denoted by Θ_n : $\Theta_n = \sum_{k=1}^n \Delta_k$.

A way to compute it is to consider 3 copies of Θ_n and organize them smartly¹ as a triangle.

¹the way we established the closed formula for triangular numbers was based on 2 copies arranged up side down

The proof is obtained by Fubini's principle by rotating this triangle as shows below:

 1
 1
 n

 1
 2
 1
 n-1

 1
 2
 3
 3
 2
 1
 ...
 ...

 1
 2
 3
 ...
 3
 2
 1
 ...
 ...
 ...

 1
 2
 3
 ...
 ...
 3
 2
 1
 2
 2
 2
 2

 1
 2
 3
 ...
 n
 ...
 3
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

The first row is equal to n + 2. The second one is equal to 3 + 2(n - 1) + 3 = 2(n + 2). The proof is obtained by Fubini's principle by rotating this triangle as shows below:

 1
 1
 n

 1
 2
 2
 1
 n-1

 1
 2
 3
 3
 2
 1
 ...

 1
 2
 3
 ...
 3
 2
 1
 ...
 ...

 1
 2
 3
 ...
 ...
 3
 2
 1
 2
 2
 2

 1
 2
 3
 ...
 n
 n
 ...
 3
 2
 1
 1
 1
 1
 1

The first row is equal to n + 2. The second one is equal to 3 + 2(n - 1) + 3 = 2(n + 2). Let us sum up the elements in row k: $\Delta_k + k(n - k + 1) + \Delta_k = k(k + 1) + kn - k^2 + k = k(n + 2)$. Thus, the global sum is equal to n + 2 times (1 + 2 + ... + n). Finally, $3\Theta_n = (n + 2)\Delta_n$ L Tetrahedral numbers

Synthesis

We proved some results in this chapter, in particular:

•
$$Id_n = 1 + 1 + \dots + 1 = n$$

•
$$\Delta_n = 1 + 2 + 3 + \dots + n = \frac{1}{2} \cdot Id_n \cdot (n+1)$$

$$\Theta_n = \Delta_1 + \Delta_2 + \ldots + \Delta_n = \frac{1}{3} \cdot \Delta_n \cdot (n+2)$$

A natural question is if we can go further following the same pattern for computing $\sum_{k=1}^{n} \Theta_k$, and so on. The next ones are the *pentatope* numbers (defined by Π_n), defined as the sum of Θ_n .

More properties

If we write these numbers as polynomials of n, we obtain:

Rank 1.
$$Id_n = n$$

• Rank 2.
$$\Delta_n = \frac{1}{2}n(n+1)$$

• Rank 3.
$$\Theta_n = \frac{1}{6}n(n+1)(n+2)$$
 where $6 = 1 \times 2 \times 3$.

Rank 4.
$$\Pi_n = \frac{1}{24}n(n+1)(n+2)(n+3)$$
 where $24 = 1 \times 2 \times 3 \times 4$.

• The next one (rank 5) is $\frac{1}{5!}n(n+1)(n+2)(n+3)(n+4)$

As these numbers are integers, P(n) = n(n+1)(n+2)(n+3) is a multiple of 4!

L Tetrahedral numbers

- 1 Sum of two consecutive triangular numbers
- 2 Product of 4 consecutive numbers P_n
- 3 Squares of odds
- 4 Tetrahedral numbers
- 5 One step further, squares and pyramids

Sum of squares

Link with triangular and tetrahedral numbers

$$\Box_n = \Delta_n + (\Delta_n - \Delta_1) + (\Delta_n - \Delta_2) + \dots + (\Delta_n - \Delta_{n-1})$$

$$= n \cdot \Delta_n - \sum_{1 \le k \le n-1} \Delta_k$$

$$= n \cdot \Delta_n - \Theta_{n-1}$$

$$= n \frac{n(n+1)}{2} - \frac{(n-1)n(n+1)}{6}$$

$$= \frac{n(n+1)}{6} (3n - (n-1))$$

$$= \frac{n(n+1)}{6} (2n+1)$$

$$= \frac{n(n+\frac{1}{2})(n+1)}{3}$$

A nice property of pyramid numbers

The problem. Compute the sum of two consecutive tetrahedral numbers: $\Theta_n + \Theta_{n-1}$ (similarly as what we did for $\Delta_n + \Delta_{n-1}$). Recall the first pyramid numbers: 1, 5, 14, 30, 55,

It is equal to \Box_n

The proof is straightforward by applying the definition: $\Theta_n = \sum_{k=1}^n \Delta_k$

 $\Theta_n + \Theta_{n-1} \\ = (\Delta_n + \Delta_{n-1}) + (\Delta_{n-1} + \Delta_{n-2}) + \dots + (\Delta_2 + \Delta_1) + \Delta_1 \\ = n^2 + (n-1)^2 + \dots + 2^2 + 1 = \Box_n$

Is there any equivalent of the sum of odds?

We established a strong link between sum of odds and the sum of consecutive triangular numbers.

According to the binomial expression, the next step is to compute the sum of hexagonal numbers $3n^2 + 3n + 1$. $(n+1)^2 = n^2 + 2n + 1$ $(n+1)^3 = n^3 + 3n^2 + 3n + 1$

Do you think that such numbers are linked with the sum of two consecutive tetrahedral numbers?