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Lecture 2 – Maths for Computer Science Recurrences

Recall of the principle

Objective

The objective of this lecture is to present induction, which is the
basic principle of recurrence and to show its application on several
examples.

This lecture is devoted to deriving and solving a variety of types of
recurrences (linear recurrence, multiple steps recurrences, etc.).

We will show how to use various ways for solving.
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Lecture 2 – Maths for Computer Science Recurrences

Recall of the principle

Brief overview of this sequence

Recall of the induction principle.

A first example (direct application)

Take care of the first steps!

Sum of cubes

Master Theorem

Non linear recurrences:
Hanoi’s towers and The token game
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Recall of the principle

An example of induction: Factorial

The classical first example of the recurrent mode of computing
involves the factorial function Fact (of a nonnegative integer).
The “direct” mode of computing Fact at an argument n is:

Fact(n) = 1× 2× · · · × n.

The recurrent mode of computing Fact(n) is more compact—and
it better exposes the inherent structure of the function.

Fact(n) =

{
n × Fact(n − 1) if n > 1

1 if n = 1
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Recall of the principle

Proof by recurrence

Goal: proving that a statement P(n) involving integer n is true
using the induction principle.

Basis. Solve the statement for the small values of n.

Induction step. Prove the statement for n assuming it is
correct for k ≤ n − 1.
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Recall of the principle

Proposition. ∀n, the nth perfect square is the sum of the first n
odd integers.

n2 = 1 + 3 + 5 + · · ·+ (2n − 3) + (2n − 1)

Proof. For every positive integer m, let P(m) denote the assertion

m2 = 1 + 3 + 5 + · · ·+ (2m − 1).

Let us proceed according to the standard format of an inductive
argument.

Basis. Because 12 = 1, proposition P(1) is true.

Induction step. Let us assume, for the sake of induction,
that assertion P(m) is true for all positive integers strictly
smaller than n.
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Recall of the principle

Consider now the summation

1 + 3 + 5 + · · ·+ (2n − 3) + (2n − 1)

Because P(n − 1) is true, we know that

1 + 3 + · · ·+ (2n − 1) =
(
1 + 3 + · · ·+ (2n − 3)

)
+ (2n − 1)

=
(
1 + 3 + · · ·+ (2(n − 1)− 1)

)
+ (2n − 1)

= (n − 1)2 + (2n − 1)

By –easy– direct calculation, we now find that

(n − 1)2 + (2n − 1) = (n2 − 2n + 1) + (2n − 1) = n2

The Principle of (Finite) Induction tells us that P(n) is true for all
integer n.
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Recall of the principle

Starting an induction

Let us (mis)use the method of Finite Induction to craft a fallacious
proof of the following absurd “fact”.

Proposition. All horses are the same color.

The base case. If there is only a single horse in the set, then P is
true (all horses in the set are the same color).

Inductive hypothesis. in every set of n horses, all horses in the
set are the same color.
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Recall of the principle

Extension to n + 1 horses.

Let us be given a set of n + 1 horses.
Remove one horse from the set, then the remaining set, call it S
has n horses.
By our inductive hypothesis, all of the horses in S have the same
color.
Now remove one horse from S and replace it with the horse that
was removed from the (n + 1)-horse set. We now have a new
n-horses set S ′.
Once again we invoke the inductive hypothesis to conclude that all
horses in S ′ have the same color. If we now reunite all of the
horses, the transitivity of the relation “have the same color”
guarantees that all of the horses in the (n + 1)-horses set have the
same color.
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Recall of the principle

What’s wrong?

We all know that all horses do not share the same color.

The base case was not adequate for the “proof”

When we remove first one horse from the set of n + 1 horses and
then another horse from that set, and we still have a horse left to
compare those two horses to, we must have started with at least
three horses!
This means that n + 1 must be no smaller than 3, so n must be no
smaller than 2. The base of the induction must, therefore, be sets
that contain 2 horses—and the same-color “proposition” is, of
course, absurd for such sets!

This brings us to the critical issue of how to select the “small”
cases that comprise the base of our induction.
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Lecture 2 – Maths for Computer Science Recurrences

Sum of cubes

Sum of n first cubes

Cn =
∑n

k=1 k
3

A straightforward upper bound is n4 since each of the n terms of
the sum k3 is less than n3.
This bound may be refined using the analogy of integrals and
Riemann’s sum, which leads to a value of order n4

4 .

Let us determine precisely this expression.
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Lecture 2 – Maths for Computer Science Recurrences

Sum of cubes

The first ranks give us an idea:
C1 = 1
C2 = 1 + 8 = 9 = 32

C3 = 1 + 8 + 27 = 36 = 62

C4 = 1 + 8 + 27 + 64 = 100 = 102, ...

All these values are perfect squares.
A more attentive observation evidences a link with the triangular
numbers (1,3,6,10, ...):
Cn = ∆2

n

This is a guess, not a proof!.
We can do a simple recurrence...
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Sum of cubes

Link with summing the odd numbers

We proved that summing the odd numbers is equal to a perfect
square.

The figure below shows an organization of the odd numbers (left)
where each row corresponds to a cube of the number of elements
in the row (right).

1"
3" 5"

7" 9" 11"
13" 15" 17" 19"

1"
3" 5"

7" 9" 11"
13" 15" 17" 19"

13"

23"

33"

43"

There are k numbers in row k.
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Sum of cubes

A little more effort...

The summation over each column, which makes the cubes is not
obvious.

1"
3" 5"

7" 9" 11"
13" 15" 17" 19"

13"

23"

33"

43"

Row k contains the sum of odds from ∆k−1 + 1 to ∆k .

= (k(k+1)
2 )2 − (k(k−1)2 )2 = k2

4 ((k + 1)2 − (k − 1)2) = k2

4 (4k) = k3
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Sum of cubes

A structural evidence?

Let us look at row k more carefully.

1	
3	 5	

7	 9	 11	
13	 15	 17	 19	

31	 33	 35	 37	 39	 41	
21	 23	 25	 27	 29	
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Sum of cubes

1	
3	 5	

7	 32	 11	
13	 15	 17	 19	

31	 33	 35	 37	 39	 41	
21	 23	 52	 27	 29	

22	

42	

62	
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Sum of cubes

Using the double counting principle

An alternative proof is to determine this result directly by using
multiplicative tables (each row/column is multiplied by the next
integer).

1	
2	
3	
4	
5	

2	
4	
6	
8	
10	

3	
6	
9	
12	
15	

4	
8	
12	
16	
20	

5	
10	
15	
20	
25	

x5	x4	x3	x2	

+	
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Sum of cubes

Using classical multiplication tables

The sum of all the elements in column k of this matrix is equal to
k times the triangular number ∆n. Thus, the global sum is:
1.∆n + 2.∆n + ...+ n.∆n = (1 + 2 + ...+ n).∆n = ∆2

n.

18 / 41



Lecture 2 – Maths for Computer Science Recurrences

Sum of cubes

Using Fubini double counting principle, it is easy to remark that
the same global sum can also be obtained by summing the n
quadrants:

1	
2	
.	
4	
5	

2	
4	
.	
8	
10	

.	

.	

.	
12	
15	

4	
8	
12	
16	
20	

5	
10	
15	
20	
25	

2+4+2	=	23	
3+6+9+6+3	=	33	

+	

Each of these partial sums at rank k is k times the
ascending/descending triangular numbers:
k .(1 + 2 + ...+ (k−1) +k + (k−1) + ...+ 2 + 1) = k .(∆k + ∆k−1).
From the previous result ∆k + ∆k−1 = k2, the sum of the elements
in quadrant k is k3. Thus, the global sum is equal to

∑n
k=1 k

3.
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Sum of cubes

Alternative geometrical proof

Another way of determining the sum of cubes by means of
triangular numbers.
The idea is that the cube of k is written as k times the squares k
by k .

Summation of the first two cubes:
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Sum of cubes

Rearranging 23
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Sum of cubes

Adding the term 33

3		

2		

1		
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Sum of cubes

General iteration of the summation of cubes

Δn		
n+1		

(n+1)/2		

(n+1)/2		
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Master Theorem

Master Theorem

The cost analysis of the divide-and-conquer paradigm leads to the
following recurrence equation. a ≥ 1 et b > 1.

f (n) = Θ(1) if n ≤ n0

f (n) = a.f (nb ) + c(n) if n > n0

We give below the general formulation for solving this equation:

1 if c(n) ∈ O(nlogba−ε) then f (n) ∈ Θ(nlogba)

2 if c(n) ∈ Θ(nlogba) then f (n) ∈ Θ(nlogbalog(n))

3 if c(n) ∈ Ω(nlogba+ε) and if a.c(n/b) ≤ kf (n) for some
constant k < 1 then, f (n) ∈ Θ(c(n))

where ε is a positive real number.
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Master Theorem

Analysis of simplified (regular) cases

We assume that n is a power of b (in other words, it can be
perfectly divided by b until reaching the value 1).

f (1) = 1

f (n) = a.f (nb ) + c (c is a positive constant)

f (1) = 1

f (n) = a.f (nb ) + n
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Master Theorem

Analysis of the simplest case

Let the function f be specified by the simple linear recurrence.
Then the value of f on any argument n is given by

f (n) = (1 + logb n) · c if a = 1

=
1− alogb n

1− a
· c ≈ c

1− a
if a < 1

=
alogb n − 1

a− 1
· c if a > 1

(1)
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Master Theorem

proof

We start by expanding the specified computation—replacing
occurrences of f (•). Once we discern the pattern, we jump to the
general form.

f (n) = af (n/b) + c
= a

(
af (n/b2) + c

)
+ c = a2f (n/b2) + (a + 1)c

= a2
(
af (n/b3) + c

)
+ (a + 1)c = a3f (n/b3) + (a2 + a + 1)c

...
...

=
(
alogb n + · · ·+ a2 + a + 1

)
c

(2)
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Master Theorem

Picturial view for a = b = 2
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Master Theorem

Linear cost instead of constant

We simplify the problem in two ways, in order to avoid
calculational complications (such as floors and ceilings) that can
mask the principles that govern our analysis.

1 We employ a very simple function g : We focus on the case
g(n) = n.
We assume that the argument n to functions f and g is a
power of b1.

2 We consider c = 1.

Removing these assumptions would significantly complicate our
calculations, but it would not change the reasoning!

1This allows us to concentrate on the general unfolding of the recurrence
without worrying about floors and ceilings
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Master Theorem

proof
Let the function f be specified by the general linear recurrence.
Then, the value of f on any argument n is given by

f (n) = alogb nf (1) +

logb(n)−1∑
i=0

(a/b)i

 n

When a > b, the behavior of f (n) is dominated by the first term:

alogb n · f (1) = nlogb a

When a < b, the behavior of f (n) is dominated by the second term:

n ·
logb(n)−1∑

i=0

(a/b)i =

(
1 − (a/b)logb(n)

)
1− (a/b)

· n ≈ b

b − a
· n
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Master Theorem

proof

We expose the algebraic pattern created by the recurrence
“unfolding”. As before, once we discern this pattern, we jump to
the general form (which can be verified via induction). f (n)

= af (n/b) + n
= a

(
af (n/b2) + n/b

)
+ n = a2f (n/b2) + (an/b + n)

= a2
(
af (n/b3) + n/b2

)
+ (a/b + 1)n = a3f (n/b3) + (a2/b2 + a/b + 1)n

...
...

= alogb nf (1) +

logb(n)−1∑
i=0

(a/b)i

 n
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Master Theorem

proof

We thus see that solving the more general recurrence requires only
augmenting the solution to the simple recurrence by “appending”
to the simple solution a geometric summation whose base is the
ratio a/b.
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Master Theorem

Picturial view for any a and b
f (n) = a.f (nb ) + c(n)
Solve this problem for a (positive) multiplicative function c defined
on the successive powers of b.
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Master Theorem

Interpretation of the master Theorem

Intuitively, the theorem tells us that F (n) is determined by the
dominance of one of the functions: granularity of the partitioning
and merge process.

if nlogba dominates, then, the solution is in Θ(nlogba), if this is the
contrary, the solution is in Θ(f (n)).
if it is well-balanced, the solution is in Θ(f (n).log(n))
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Master Theorem

Non-linear recurrences: example Hanoi’s Towers

A set of n disks of decreasing diameters initially stacked on one of
three pegs.
Problem definition. The goal is to transfer the entire tower from
a given peg to another fixed one, moving only one disk at a time
and never moving a larger disk on top of a smaller one.

D I	 A	

The main question is to determine the best way to realize this
operation (which means in a minimum number of moves).
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Master Theorem

Lower Bound

Let call Hn the number of moves required to solve the puzzle with
n disks. What is the minimum number of moves?
When there is only one disk, there is only one move: H1 = 1, with
two disks, at least 3 moves are necessary: H2 = 3.

Let us prove Hn ≥ 2Hn−1 + 1. Indeed, looking at the largest disk,
the n − 1 others must be on a single peg, which required Hn−1 to
put them here. Then, the largest disk should be moved, and again
move the n − 1 others on the target peg.
Thus, we have the following recurrence to solve: Hn = 2Hn−1 + 1
(n ≥ 2) with H1 = 1.

There exists a closed formula: The first ranks give us an insight of
the solution (1, 3, 7, 15, 31, ...).
We guess Hn = 2n − 1 for n ≥ 1.
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Master Theorem

Compute the cost

Basis is straightforward since H1 = 21 − 1 = 1.

Induction step
Hn = 2Hn−1 + 1 where Hn−1 = 2n−1 − 1,
thus, Hn = 2(2n−1 − 1) + 1 = 2n − 1 and we are done.

Notice that this expression can also be obtained directly as the
sum of a geometric series:
Hn = 2Hn−1 + 1
= 2(2Hn−2 + 1) + 1
=
∑n−1

j=0 2j

= 1−2n
1−2 = 2n − 1
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Master Theorem

The classical (recursive) solution
The natural method is recursive. It consists in moving the n − 1
top disks on the intermediate peg, then, put the largest one on the
target peg, and moving again the n − 1 disks on top of it.
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Master Theorem

formal algorithm

input: an integer n, three pegs indexed as D (departure), A
(arrival) and I (intermediate). All the disks are stacked on peg D.
output: The disks are stacked on peg A.

If (n 6= 0) then

Hanoi(n-1,D,I,A)

move disk from D to A

Hanoi(n-1,I,A,D)

Analysis. It is easy to compute the number of moves, using the
same recurrence equation as for the lower bound:
Hn = 2n − 1.
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Master Theorem

The Token Game
Consider a bank with n circle positions numbered from 1 to n and
n tokens. Initially, the bank is empty.

The game consists in determining the process to fill the bank with
the n tokens, putting or removing one token at a time according to
one of the two following constraints.

Rule 1. Position 1: Put a token if it is empty or remove it.

Rule 2. Position next to the first empty position (i.e. on the
right): Put a token if the position is empty or remove it.

40 / 41



Lecture 2 – Maths for Computer Science Recurrences

Master Theorem

Figure: Rule 1: Position 1 contains a token, thus, remove it.

Figure: Rule 2: The position next to the first idle position (i.e. position 3
here) is idle, thus, put a remaining token.
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