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Lecture 1 – Maths for Computer Science

Context

The main idea of this preliminary lecture is to introduce some
methodology to prove some results in Discrete Mathematics
(in the field of combinatorics, summations, counting, basic number
theory).
We will show how to handle simple and less easy results with very
basic tools that do not require any sophisticated background in
Maths.

A subsequent goal is to strengthen the intuition while doing Maths.
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Brief overview of proving techniques

Contradiction contradictio in contrarium

Induction

Geometric proofs

Combinatoric proofs

Bijections between sets

Pigeon holes

All means are good!

Proofs by computers

Fubini’s principle1.

1A nice way for proving results on integers is to represent them by sets of
items (bullets, squares, numbers, intervals). More explanations are coming
soon...
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Content

1 Preliminary examples

2 Basic summations (triangular numbers)

3 Sum of odd numbers

4 Sum of squares
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Preliminary examples

Proof by contradiction

Let prove that
√

2 is irrational.
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Preliminary examples

Proof by contradiction

Assume
√

2 is rational, this means it can be written as p
q .

There exists a pair of p and q which have no common divisors.

Thus, 2.q2 = p2.
p2 is even (divisible by 2) then p is also even (the square of an odd
number is odd). This means that p = 2m for some positive integer
m, which allows us to rewrite:
2.q2 = 4.m2, after simplification: q2 = 2.m2.
Thus, q must be even.
Both q and p have a common factor (2), which contradicts the
assumption that they both share no common prime divisor.
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Preliminary examples

Proof by induction

Proving that a statement P(n) involving integer n is true.

Basis. Solve the statement for the small values of n.

Induction step. Prove the statement for n assuming it is
correct for k ≤ n − 1.

Solve the following equation:
Un+1 = 2.Un + 1, where U1 = 1. Guess Un = 2n − 1.

Clearly this result holds for n = 1.
Assume it is correct for n and write
Un+1 = 2.Un + 1 = 2.(2n − 1) + 1 = 2n+1 − 1

7 / 37



Lecture 1 – Maths for Computer Science

Preliminary examples

Proof by induction

Proving that a statement P(n) involving integer n is true.

Basis. Solve the statement for the small values of n.

Induction step. Prove the statement for n assuming it is
correct for k ≤ n − 1.

Solve the following equation:
Un+1 = 2.Un + 1, where U1 = 1. Guess Un = 2n − 1.

Clearly this result holds for n = 1.
Assume it is correct for n and write
Un+1 = 2.Un + 1 = 2.(2n − 1) + 1 = 2n+1 − 1

7 / 37



Lecture 1 – Maths for Computer Science

Preliminary examples

A (old and simple) geometrical proof

This example has been provided by Al Khwarizmi (XIIth century).
The solution of the equation x2 + 10x = 39 is determined by
means of the surfaces of elementary pieces.

We first represent the left hand side x2 + 45
2x .

The surface of the cross is equal to the right hand side.
Adding the 4 little squares in the border leads to a total surface of
39 + 425

4 = 64, which is the square of 8.
We finally deduce x : 8− 25

2 = 3.
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Preliminary examples

Pigeon’s holes and relations between sets.
The principle here is to establish a correspondence between two
sets (pigeons and boxes).
If there are more pigeons than boxes, thus, at least one box
contains more than one pigeon.

Let consider the following problem:
You are attending a party that hosts n couples. In order to create a
nice social atmosphere, the hosts requests that each attendees
shake the hand of every person that he/she does not know.
Some attendees shake the same number of hands.

Here, the boxes are the number of times someone shake hands.
The persons are the pigeons. There are 2n persons at the party.
The number of people that each attendee does not known is
{0, 1, ..., 2n − 2} which contains 2n − 1 elements.
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Preliminary examples

Proof by computers.

The 4-colors theorem (which was a famous conjecture).
Coloring planar graphs using no more than 4 colors.
Constraint: 2 neighbor vertices must have different colors.

Easy to color a planar graph in 6 colors.
For 4 colors, the initial proof needed to check the property on 1478
basic configurations!
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Preliminary examples

Other unconventional ways to prove

The informal idea is to establish a one-to-one correspondence
between elements of a set (integers).

Fubini’s principle2:

Enumerate the elements of a set by two different methods, one
leading to an evidence.

2Guido Fubini 1879-1943
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Preliminary examples

Content

1 Preliminary examples

2 Basic summations (triangular numbers)

3 Sum of odd numbers

4 Sum of squares
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Basic summations (triangular numbers)

Triangular numbers

Definition:
Triangular numbers are defined as the sum of the n first integers:
∆n =

∑n
k=1 k .

There exist many proofs for this result, the simplest one is
obtained in writing this sum forward and backward and gathering
the terms two by two as follows:

2.Δn  =   1  +   2     +  …  +  n  
+    n   +   n-1  +  … +  1  

= (n+1) + (n+1) + … + (n+1) !

2∆n is n times n + 1, thus, ∆n = (n+1).n
2
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Basic summations (triangular numbers)

Another way of looking at this process (1)

Use the Fubini’s principle.

∆n is represented by piles of bullets arranged as a triangle. Putting
two copies up side down gives the n by n + 1 rectangle.

1" 2" 3" n"

n" n&1" n&2" 1"2"
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Basic summations (triangular numbers)

Another way of looking at this process (2)
The following figure proves the same result by using a geometric
argument instead of bullets.

n!1! 2! n!3!

n!

The sum is represented by a tesselation of boxes of size 1 by 1.
The global result is determined by the surface of half the big
square (n

2

2 ) plus n times half of the surface of the unit square in
the diagonal.
Thus, n2

2 + n.12 = (n+1).n
2
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Basic summations (triangular numbers)

Sum of two consecutive triangular numbers
An interesting question is to compute ∆n + ∆n−1.
Computing the first ranks leads us to an evidence: ∆1 + ∆0 = 1,
then, 4, 9, 16, 25, 36, ...

It is natural to guess ∆n = n2, which is easy provable by induction
(or alternatively, using the expression ∆n + ∆n−1 = n + 2∆n−1
since ∆n = n + ∆n−1).
This result can be directly obtained using a geometric pattern:

n"1$

n$

Δn$
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Sum of odd numbers

Sum of odds

Determine the sum of the first odd integers, denoted by
Sn =

∑n−1
k=0(2k + 1).

This result may again be established by using Fubini’s principle.
The bullets depict the consecutive odd numbers. The arrangement
of the bullets gives two ways for counting.
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Sum of odd numbers

Sn = n2
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Sum of odd numbers

Rearranging the figure as a butterfly gives an insight of another
expression of ∆n + ∆n−1.

Δn!

The analytic expression is as follows:

Δn + Δn-1 = 1 + 2 + 3 + … +  n  
    + 1 + 2 + … + n-1  

= 1 + 3 + 5 + … +  (2n-1) !
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Sum of odd numbers

We can also imagine an alternative construction which uses four
copies of Sn that exactly correspond to an 2n by 2n square as
depicted in the figure.

2n#1%

2n#1%

This leads to 4.Sn = (2n)2, thus Sn = n2.
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Sum of odd numbers

Generalization (1)
Both previous examples of triangular and sum of odd numbers are
special cases of arithmetic progressions: starting at p1 = a,
pn = pn−1 + b for n > 2.

The figure below shows that the sum of the n first elements of an
arithmetic progression is equal to n.a + ∆n−1.b.

a	 b	

For instance, a = 1 and b = 2 for the sum of the first n odd
numbers. We have Sn = n + 2.∆n−1 = n + n(n − 1) = n2.
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Sum of odd numbers

Generalization (2)
Another interesting case is for a = 1 and b = 4 (1, 5, 9, 13, 17, ...).

The sum is equal to n(2n − 1) = n + 4∆n−1.

= ∆n + 3∆n−1 which is also a triangular number (∆2n−1).

Δn-1	Δn-1	

Δn-1	

Δn	
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Sum of squares

Various ways to solve the sum of squares

Definition:
Sum of the n first squares:
�n =

∑n
k=1 k

2.
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Sum of squares

Method 1: determine the asymptotic behavior
Very rough analysis:
as k2 ≤ n2 ∀k ≤ n, �n ≤

∑n
k=1 n

2 = n3.

A slightly more precise analysis is: �n ≤ c n3

3

In other words, it is in O(n
3

3 ).
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Sum of squares

asymptotic behavior
Actually, we have a bit more by bounding the sum with another
integral:

�n ≥ c ′ n
3

3

It is in Ω(n
3

3 ), thus, it is Θ(n
3

3 )
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Sum of squares

Method 2: by induction

Compute the first ranks:

n 0 1 2 3 4 5 6 7 8 9 10

n2 0 1 4 9 16 25 36 49 64 81 100

Sn 0 1 5 14 30 55 91 140 204 285 385

Guess the expression (or take it in a book):

�n = n(n+1)(2n+1)
6
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Sum of squares

Strong induction

Basis: �1 = (2×3)
6 = 12

Assume �n = n(n+1)(2n+1)
6

Compute �n+1 = �n + (n + 1)2

= (n + 1)n(2n+1)
6 + n + 1

= (n + 1)2n
2+n+6n+6

6

= (n+1)(n+2)(2n+3)
6
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Sum of squares

Method 3: undetermined coefficients

Let write �n = α0 + α1n + α2n
2 + α3n

3

�0 = α0 = 0
�1 = α1 + α2 + α3 = 1
�2 = 2α1 + 4α2 + 8α3 = 5
�3 = 3α1 + 9α2 + 27α3 = 14

α1 = 1
6 , α1 = 1

2 and α1 = 1
3

Thus, �n = n
6 + n2

2 + n3

3
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Sum of squares

Method 4: perturb the sum
Developing two ways to compute Cn =

∑n
k=1 k

3 allows to express
�n.

1 Cn+1 = 1 +
∑n+1

k=2 k
3

= 1 +
∑n

k=1(k + 1)3

= 1 +
∑n

k=1(k3 + 3k2 + 3k + 1)

= 1 + Cn + 3�n + 3∆n + n

2 Cn+1 = (n + 1)3 +
∑n

k=1 k
3 = (n + 1)3 + Cn

= n3 + 3n2 + 3n + 1 + Cn

Let now equal both expression to deduce �n.

1 + 3�n + 3n2+n
2 + n = n3 + 3n2 + 3n + 1

3�n = n3 + 3n2 + 2n − 3n2+n
2 = n3 + 3n2

2 + n
2
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Sum of squares

Method 5: expand and contract the sum
�n =

∑n
k=1 k

2

=
∑n

k=1

∑k
i=1 k

= 1 + (2 + 2) + (3 + 3 + 3) + (4 + 4 + 4 + 4) + ...+ (n+ n+ ...+ n)

= (1 + 2 + ....+ n) + (2 + 3 + ...+ n) + (3 + 4 + ...+ n) + ...+ n

=
∑n−1

k=0(∆n −∆k)

= n.∆n −
∑n−1

k=1 ∆k

�n = n2(n+1)
2 −

∑n−1
k=1

k2

2 −
1
2∆n−1

�n = n2(n+1)
2 − 1

2(�n − n2)− n(n−1)
4

3
2�n = 1

2(n3 + n2 + n2 − n2−n
2 )

�n = 1
3(n3 + 3

2n
2 + n

2 )
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Sum of squares

Method 6: graphical proof

Consider 3 copies of the sum represented by unit squares.
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Sum of squares

Graphical proof
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Sum of squares

Graphical proof
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Sum of squares

Graphical proof

Conclusion: The area of the 3 sums is equal to a big rectangle
2n + 1 by ∆n = n(n+1)

2 .

Thus, 3�n = (2n+1)n(n+1)
2
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