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Objective and plan

The purpose of this lecture is to go deeper into recurrence proofs,
in particular, bilinear recurrences.

un+1 = α.un + β.un−1 + γ where u0 and u1 are given.
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Applications
We already studied such an inductive expression.

Token Game
T (n + 1) = T (n) + 2.T (n − 1) + 1 with T (0) = 1 and T (1) = 2

Fibonacci numbers
The simplest possible bilinear recurrence (α = β = 1 and γ = 0).
F (n + 1) = F (n) + F (n − 1) with F (0) = 1 and F (1) = 1

Lucas’ numbers
Same as Fibonacci with a different seed.
L(n + 1) = L(n) + L(n − 1) with L(0) = 1 and L(1) = 3

Derangements

d(n + 1) = n (d(n − 1) + d(n − 2)) with d(0) = 1 and d(1) = 2
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Definition of Fibonacci numbers

Definition of Fibonacci numbers

The original problem has been introduced by Leonardo of Pisa
(Fibonacci) in the middle age.

Fibonacci numbers are the number of pairs of rabbits that can
be produced at the successive generations.

Starting by a single pair of rabbits and assuming that each
pair produces a new pair of rabbits at each generation during
only two generations.
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Definition of Fibonacci numbers

Definition (pictorially)

5 / 41



Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Definition of Fibonacci numbers

Definition (more formally)

Definition:
Given the two numbers F (0) = 1 and F (1) = 1
the Fibonacci numbers are obtained by the following expression:
F (n + 1) = F (n) + F (n − 1)

The first ranks:

n 0 1 2 3 4 5 6 7 8 9 10 ...

F(n) 1 1 2 3 5 8 13 21 34 55 89 ...
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Definition of Fibonacci numbers

Combinatorial interpretation

Proposition

The Fibonacci number F (n) can be interpreted as the number of
length-n binary strings in which each occurence of a 1 is directly
preceded by a 0.

Let Sn be the set of such strings of length n.
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Definition of Fibonacci numbers

Proof

By the previous definition, every binary string ωn ends either with 0
or with 01.

If ωn ends with 0, then, it has the form x0 where the prefix x
is a binary string of length n − 1.
Moreover, x must belongs to Sn−1 in order ωn belongs to Sn.
Therefore Sn contains |Sn−1| strings of this form.

If ωn ends with 01, then it has the form ωn = y01, where the
prefix y is a binary string of length n − 2.
Moreover, y must belong to Sn−2 in order for ωn to belong to
Sn, that contains |Sn−2| strings of this form.

F (n) = |Sn| = F (n − 1) + F (n − 2)
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Definition of Fibonacci numbers

Link with the Pascal’s triangle
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Some recurrences on Fibonacci numbers

Studying a first property

Proposition:

F (n + 2) = 1 +
∑n

k=0 F (k)

Let check the expression on the first ranks:

n = 1,
F (3) = 1 + F (1) + F (0) = 1 + 1 + 1 = 3

n = 2,
F (4) = 1 + F (2) + F (1) + F (0) = 1 + 2 + 1 + 1 = 5

n = 3,
F (5) = 1 + F (3) + F (2) + F (1) + F (0) = 1 + 3 + 2 + 1 + 1 = 8
...
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Some recurrences on Fibonacci numbers

Proof

By induction

The basis case (for n = 0) is true since F (2) = 1 + F (0).

Induction step: Let assume the property holds at rank n for
F (n + 2) and compute F (n + 3):
Apply the definition of Fibonacci numbers:
F (n + 3) = F (n + 1) + F (n + 2)
Replace the last term by the recurrence hypothesis:
F (n + 2) = 1 +

∑n
k=0 F (k)

Thus,
F (n + 3) = F (n + 1) + 1 +

∑n
k=0 F (k) = 1 +

∑n+1
k=0 F (k)
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Some recurrences on Fibonacci numbers

Product of two consecutive Fibonacci numbers

Proposition:

F (n).F (n − 1) =
∑n−1

k=0 F (k)2 (for n ≥ 1)

Let check the expression on the first ranks:

n = 2, F (2).F (1) = F (1)2 + F (0)2 = 1 + 1 = 2

n = 3, F (3).F (2) = F (2)2 + F (1)2 + F (0)2 = 4 + 1 + 1 = 6

n = 4, F (4).F (3) = F (3)2 + F (2)2 + F (1)2 + F (0)2 = 15

n = 5, F (5).F (4) = F (4)2 + F (3)2 + F (2)2 + F (1)2 + F (0)2 = 40

...

12 / 41



Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Some recurrences on Fibonacci numbers

Proof by induction

The basis case (for n = 1) is true since
F (1).F (0) = F (0)2 = 1.

Induction step1: Let assume the property holds at rank n
and compute F (n + 1).F (n):
Apply the definition of F (n + 1):
F (n + 1).F (n) = (F (n) + F (n − 1)).F (n)
= F (n)2 + F (n).F (n − 1)
Apply now the induction hypothesis to this last term:
F (n + 1).F (n) = F (n)2 +

∑n−1
k=0 F (k)2 =

∑n
k=0 F (k)2

1exactly the same scheme as before!
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Some recurrences on Fibonacci numbers

An alternative proof by recurrence

The relation can be proved very easily by the geometric argument
shown below
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Some recurrences on Fibonacci numbers

Another property dealing with squares

Proposition:

F (n + 2)2 = 4.F (n).F (n + 1) + F (n − 1)2 for n ≥ 2.

Let check the expression on the first ranks:

n = 1, F (3)2 = 32 = 4.F (1).F (2) + F (0)2 = 8 + 1 = 9

n = 2, F (4)2 = 52 = 4.F (2).F (3) + F (1)2 = 24 + 1 = 25

n = 3, F (5)2 = 82 = 4.F (3).F (4) + F (2)2 = 60 + 4 = 64

n = 4, F (6)2 = 132 = 4.F (4).F (5) + F (3)2 = 160 + 9 = 169
...
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Some recurrences on Fibonacci numbers

Analytic proof

Use the definition of the Fibonacci numbers and expand:

F (n + 2)2 = (F (n + 1) + F (n))2

= F (n + 1)2 + 2.F (n + 1).F (n) + F 2
n

= 4.F (n + 1).F (n)− 2.F (n + 1).F (n) + F (n + 1)2 + F (n)2

= 4.F (n + 1).F (n) + (F (n + 1)− F (n))2

Again, using the definition of F (n + 1) into the square, we get the
expected result:

F (n + 2)2 = 4.F (n + 1).F (n) + F (n − 1)2
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Some recurrences on Fibonacci numbers

Graphical proof
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Cassini’s identity

Cassini’s identity

Proposition:

F (n − 1).F (n + 1) = F (n)2 + (−1)n+1 for n ≥ 1

Let check the expression on the first ranks:

n = 1, F (0).F (2) = F (1)2 + 1 = 2

n = 2, F (1).F (3) = F (2)2 − 1 = 3

n = 3, F (2).F (4) = F (3)2 + 1 = 10

n = 4, F (3).F (5) = F (4)2 − 1 = 24

...
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Cassini’s identity

Proof (by induction)

The basis case n = 1 holds since F (0).F (2) = F (1)2 + 1 = 2.

The induction step is proved assuming the Cassini’s identity
holds at rank n.
Apply the definition of F (n + 2):
F (n).F (n+2) = F (n)(F (n+1)+F (n)) = F (n)2+F (n).F (n+1)

Replace the last term using the recurrence hypothesis:
F (n)2 = F (n − 1).F (n + 1)− (−1)n+1

= F (n − 1).F (n + 1) + (−1)n+2

Thus,
F (n).F (n+ 2) = F (n).F (n+ 1) +F (n−1).F (n+ 1) + (−1)n+2

= F (n + 1)(F (n) + F (n − 1)) + (−1)n+2

Apply again the definition of Fibonacci sequence
F (n) + F (n − 1) = F (n + 1), we obtain:
F (n).F (n + 2) = F (n + 1)2 + (−1)n+2
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Cassini’s identity

Computing F (n) fast

F (n) can be computed in log2(n) steps.

Proposition.

For all integers n:
(a) F (2n) = (F (n))2 + (F (n − 1))2;
(b) F (2n + 1) = F (n)× (2F (n − 1) + F (n)).
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Cassini’s identity

Details (a) – Proof by induction
The base case n = 1 is true because

F (2) = (F (1))2 + (F (0))2 = 2

F (3) = F (1)× (2F (0) + F (1)) = 3

Assume that the property holds for n, for both F (2n) and
F (2n + 1).

F (2(n + 1)) = F (2n + 1) + F (2n)

= (F (n))2 + (F (n − 1))2 + F (n)× (2F (n − 1) + F (n))

= (F (n))2 + (F (n − 1))2 + 2(F (n)× F (n − 1)) + (F (n))2

= (F (n) + F (n − 1))2 + (F (n))2

= (F (n + 1))2 + (F (n))2
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Cassini’s identity

Details (b)

We again start by applying the defining recurrence of the Fibonacci
numbers on F (2(n + 1) + 1)

= F (2(n + 1)) + F (2n + 1)

= (F (n + 1))2 + F (n)2 + F (n)× (2F (n − 1) + F (n))

= (F (n + 1))2 + 2(F (n − 1) + F (n))× F (n)

= (F (n + 1))2 + 2F (n + 1)× F (n)
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Cassini’s identity

Pictorially
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Cassini’s identity

Pictorially (from one node)
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Lucas’ numbers

Definition of Lucas’ numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping
the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas,
starting at 2 and 1 .

For some reasons that will be clarified later, the sequence is shifted
backwards (we take the convention L(−1) = 2).
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Lucas’ numbers

Definition of Lucas’ numbers

Definition:
Given the two numbers L(0) = 1 and L(1) = 3
all the other Lucas’ numbers are obtained by the same progression
as Fibonacci:

L(n + 1) = L(n) + L(n − 1)

n -1 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 ...

L(n) 2 1 3 4 7 11 18 29 47 76 123 ...
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Lucas’ numbers

There are2 strong links with Fibonacci numbers.

In particular, we established before that:

F (n + 2) = 1 +
∑n

k=0 F (k).

We have similarly:

L(n + 2) = 1 +
∑n

k=−1 L(k)
since the basic step of the induction is still valid3.
L(2) = L(−1) + L(0) + 1 = 2 + 1 + 1 = 4.

2of course
3It will be true for all the progressions where u1 = 1
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Lucas’ numbers

A first Property

We can also easily show that the Lucas number of order n is the
sum of two Fibonacci numbers:

Proposition.

L(n) = F (n − 1) + F (n + 1) for n ≥ 1

Let check this property on the first ranks:
n = 2, L(2) = F (1) + F (3) = 1 + 3 = 4

n = 3, L(3) = F (2) + F (4) = 2 + 5 = 7

n = 4, L(4) = F (3) + F (5) = 3 + 8 = 11

n = 5, L(5) = F (4) + F (6) = 5 + 13 = 18

...
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Lucas’ numbers

Proof by induction

The basis case (for n = 1) is true since
L(1) = 3 = F (2) + F (0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
k ≤ n and compute L(n + 1):
Apply the definition of Lucas’ numbers:
L(n + 1) = L(n) + L(n − 1)

Apply the induction hypothesis on both terms:
L(n + 1) = F (n + 1) + F (n − 1) + F (n) + F (n − 2)
Apply now the definition of Fibonacci numbers for
F (n + 1) + F (n) = F (n + 2) and F (n− 1) + F (n− 2) = F (n)
replace them in the previous expression:
L(n + 1) = F (n + 2) + F (n)

which concludes the proof.
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Lucas’ numbers

Extension 1

Notice that using a similar approach, we obtain
L(n) = F (n + 2)− F (n − 2).

What happens if we generalize?

Proposition.

2.L(n) = F (n + 3) + F (n − 3)

Proof.
We start from L(n) = F (n + 2)− F (n − 2)
F (n + 2) = F (n + 3)− F (n + 1) and
F (n − 2) = F (n − 1)− F (n − 3)
L(n) = F (n + 3)− (F (n + 1) + F (n − 1)) + F (n − 3)
2.L(n) = F (n + 3) + F (n − 3)

30 / 41
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Lucas’ numbers

Extension 2

Go to the next step using the same technique:

2.L(n) = F (n + 3) + F (n − 3)
= F (n + 4)− F (n + 2) + F (n − 2)− F (n − 4)

3.L(n) = F (n + 4)− F (n − 4)

One more step: 5.L(n) = F (n + 5) + F (n − 5)

Thus, we guess the following expression.

Proposition4.

F (k − 1).L(n) = F (n + k) + (−1)k−1F (n − k) for k ≤ n

4The formal proof is let to the reader
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Two other propositions

Proposition.

F (n + 1) = 1
2 (F (1).L(n) + F (n).L(1))

The proof comes from direct arithmetic manipulations:
2.F (n + 1) = F (n + 1) + F (n + 1)

= F (n + 1) + F (n) + F (n − 1)

= L(n) + F (n)

= F (1).L(n) + F (n).L(1)

The previous property can be extended for any k > 1
Let compute the expression of F (k).L(n) + F (n).L(k)
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A final natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive
Fibonacci number tends to the Golden ratio:
limn→∞

F (n)
F (n−1) = Φ

As this result is obtained by solving the following equation
x2 = x + 1 (Φ is the positive root) and does not depend on the
first rank, this holds also for the Lucas’ numbers.
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A last result: the Zeckendorf’s Theorem

Objective: Study the Fibonacci numbers as a numbering system.

Let us first introduce a notation: j � k iff j ≥ k + 2.
The Zeckendorf’s theorem states that:

every positive integer n has a unique decomposition of the form:
n = Fk1 + Fk2 + ...+ Fkr where k1 � k2 � ...� kr and kr ≥ 2

Here, we assume that the Fibonacci sequence starts at index 1 and
not 0, moreover, the decompositions will never consider F (1)
(since F (1) = F (2)).
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Derangements
Derangements represent one of the simplest forms of avoidance
problems.

A professor views it as a win-win strategy for the students in
her class to grade each others’ essays on The Essential Truth
in the Universe.
The essays thereby get graded faster.
Moreover, each student gets a chance to see how another
student has interpreted some basic component of the human
experience.
The only complication is: How should we allocate essays
among the students?

The process must ensure that no student is assigned her own essay
to critique.

This challenge is known as a derangement problem.
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Derangements

A derangement of a (finite) set A is a bijection f : A↔ A
that has no fixed point.

In other words, for every a ∈ A, we must have f (a) 6= a.

Clearly, derangements always exist (for n > 1).

One can just label the elements of set A by the numbers
0, 1, . . . , |A| − 1 and specify f (a) = a + 1 mod |A|.
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Playing around with a simple example

However, derangements are not so common! In fact, the set
A = {0, 1, 2} admits six self-bijections, but only two are
derangements. Which ones?

f (a) = a + 1 mod 3 : which maps (0→ 1), (1→ 2), (2→ 0)

g(a) = a− 1 mod 3 : which maps (0→ 2), (1→ 0), (2→ 1)

How many derangements does an arbitrary n-element set A
have? We denote this quantity by d(n).
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Derangements

We compute d(n) for arbitrary integer n via the following
recursion:

For n = 1: d(1) = 0.

The unique bijection in this case consists only of a fixed point.

For n = 2: d(2) = 1.

There are two bijections in this case

the identity, which has two fixed points
the swap, which is a derangement.
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The inductive expression

For n > 2: d(n) = (n − 1)(d(n − 1) + d(n − 2)):

To see this, note first that in any derangement, the first
element of A, call it a, must map to some b 6= a.

Note next that there are n − 1 ways to choose b.
There are d(n − 2) derangements under which b maps to a.
In those cases, we know everything about a and b, so we need
worry only about the remaining elements of A.
These n − 2 elements can “derange” in all possible ways.
There are d(n − 1) derangements under which element b does
not map to a.
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An observation

The preceding reasoning verifies the following recurrence

d(n) =


0 if n = 1
1 if n = 2

n(̇d(n − 1) + d(n − 2)) if n > 2
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Solving the recurrence

There are several ways to solve this recurrence.

We can reduce the bilinearity by a linear recurrence:

d(n) =

{
0 if n = 1

n · d(n − 1) + (−1)n if n > 1

Interestingly, as the number of objects in the set to be deranged
grows without bound.

The proportion of bijections that are derangements tends to the
limit 1/e, where e is the base of natural logarithms.
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Concluding remarks and take home message

We are more interested here by the dynamic process of computing
the successive terms of the progressions than in their asymptotic
limits when n is large...
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