Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Denis TRYSTRAM Lecture notes MoSIG1

Oct. 2021

Objective and plan

The purpose of this lecture is to go deeper into recurrence proofs, in particular, bilinear recurrences.

 $u_{n+1} = \alpha . u_n + \beta . u_{n-1} + \gamma$ where u_0 and u_1 are given.

Applications

We already studied such an inductive expression.

Token Game T(n+1) = T(n) + 2.T(n-1) + 1 with T(0) = 1 and T(1) = 2

Applications

We already studied such an inductive expression.

Token Game T(n+1) = T(n) + 2.T(n-1) + 1 with T(0) = 1 and T(1) = 2

Fibonacci numbers

The simplest possible bilinear recurrence ($\alpha = \beta = 1$ and $\gamma = 0$). F(n+1) = F(n) + F(n-1) with F(0) = 1 and F(1) = 1

Lucas' numbers

Same as Fibonacci with a different seed. L(n+1) = L(n) + L(n-1) with L(0) = 1 and L(1) = 3

Derangements

$$d(n+1) = n(d(n-1) + d(n-2))$$
 with $d(0) = 1$ and $d(1) = 2$

Definition of Fibonacci numbers

The original problem has been introduced by Leonardo of Pisa (Fibonacci) in the middle age.

- Fibonacci numbers are the number of pairs of rabbits that can be produced at the successive generations.
- Starting by a single pair of rabbits and assuming that each pair produces a new pair of rabbits at each generation during only two generations.

Definition (pictorially)

Definition (more formally)

Definition:

Given the two numbers F(0) = 1 and F(1) = 1

the Fibonacci numbers are obtained by the following expression:

$$F(n+1) = F(n) + F(n-1)$$

Definition (more formally)

Definition:

Given the two numbers F(0) = 1 and F(1) = 1the Fibonacci numbers are obtained by the following expression: F(n+1) = F(n) + F(n-1)

The first ranks:

n	0	1	2	3	4	5	6	7	8	9	10	
F(n)	1	1	2	3	5	8	13	21	34	55	89	

Combinatorial interpretation

Proposition

The Fibonacci number F(n) can be interpreted as the number of length-*n* binary strings in which each occurrence of a 1 is directly preceded by a 0.

Let S_n be the set of such strings of length n.

Proof

By the previous definition, every binary string ω_n ends either with 0 or with 01.

- If ω_n ends with 0, then, it has the form x0 where the prefix x is a binary string of length n 1.
 Moreover, x must belongs to S_{n-1} in order ω_n belongs to S_n. Therefore S_n contains |S_{n-1}| strings of this form.
- If ω_n ends with 01, then it has the form ω_n = y01, where the prefix y is a binary string of length n − 2.
 Moreover, y must belong to S_{n-2} in order for ω_n to belong to S_n, that contains |S_{n-2}| strings of this form.

$$F(n) = |S_n| = F(n-1) + F(n-2)$$

Link with the Pascal's triangle

Studying a first property

Proposition: $F(n+2) = 1 + \sum_{k=0}^{n} F(k)$

Studying a first property

Proposition: $F(n+2) = 1 + \sum_{k=0}^{n} F(k)$

Let check the expression on the first ranks:

$$n = 1,$$

$$F(3) = 1 + F(1) + F(0) = 1 + 1 + 1 = 3$$

$$n = 2,$$

$$F(4) = 1 + F(2) + F(1) + F(0) = 1 + 2 + 1 + 1 = 5$$

$$n = 3,$$

$$F(5) = 1 + F(3) + F(2) + F(1) + F(0) = 1 + 3 + 2 + 1 + 1 = 8$$

...

Proof

By induction

- The basis case (for n = 0) is true since F(2) = 1 + F(0).
- Induction step: Let assume the property holds at rank *n* for F(n+2) and compute F(n+3): Apply the definition of Fibonacci numbers: F(n+3) = F(n+1) + F(n+2)Replace the last term by the recurrence hypothesis: $F(n+2) = 1 + \sum_{k=0}^{n} F(k)$ Thus, $F(n+3) = F(n+1) + 1 + \sum_{k=0}^{n} F(k) = 1 + \sum_{k=0}^{n+1} F(k)$

. . .

Product of two consecutive Fibonacci numbers

Proposition: $F(n).F(n-1) = \sum_{k=0}^{n-1} F(k)^2 \text{ (for } n \ge 1)$

Let check the expression on the first ranks:

$$n = 2, F(2).F(1) = F(1)^{2} + F(0)^{2} = 1 + 1 = 2$$

$$n = 3, F(3).F(2) = F(2)^{2} + F(1)^{2} + F(0)^{2} = 4 + 1 + 1 = 6$$

$$n = 4, F(4).F(3) = F(3)^{2} + F(2)^{2} + F(1)^{2} + F(0)^{2} = 15$$

$$n = 5, F(5).F(4) = F(4)^{2} + F(3)^{2} + F(2)^{2} + F(1)^{2} + F(0)^{2} = 40$$

Proof by induction

- The **basis case** (for n = 1) is true since $F(1).F(0) = F(0)^2 = 1$.
- Induction step¹: Let assume the property holds at rank nand compute F(n + 1).F(n): Apply the definition of F(n + 1): F(n + 1).F(n) = (F(n) + F(n - 1)).F(n) $= F(n)^2 + F(n).F(n - 1)$ Apply now the induction hypothesis to this last term: $F(n + 1).F(n) = F(n)^2 + \sum_{k=0}^{n-1} F(k)^2 = \sum_{k=0}^{n} F(k)^2$

¹exactly the same scheme as before!

An alternative proof by recurrence

The relation can be proved very easily by the geometric argument shown below

Another property dealing with squares

Proposition:
$$F(n+2)^2 = 4.F(n).F(n+1) + F(n-1)^2$$
 for $n \ge 2$.

Let check the expression on the first ranks:

$$n = 1, F(3)^{2} = 3^{2} = 4.F(1).F(2) + F(0)^{2} = 8 + 1 = 9$$

$$n = 2, F(4)^{2} = 5^{2} = 4.F(2).F(3) + F(1)^{2} = 24 + 1 = 25$$

$$n = 3, F(5)^{2} = 8^{2} = 4.F(3).F(4) + F(2)^{2} = 60 + 4 = 64$$

$$n = 4, F(6)^{2} = 13^{2} = 4.F(4).F(5) + F(3)^{2} = 160 + 9 = 169$$

Analytic proof

Use the definition of the Fibonacci numbers and expand:

$$F(n+2)^{2} = (F(n+1) + F(n))^{2}$$

$$= F(n+1)^{2} + 2.F(n+1).F(n) + F_{n}^{2}$$

$$= 4.F(n+1).F(n) - 2.F(n+1).F(n) + F(n+1)^{2} + F(n)^{2}$$

$$= 4.F(n+1).F(n) + (F(n+1) - F(n))^{2}$$

Again, using the definition of F(n+1) into the square, we get the expected result:

$$F(n+2)^2 = 4.F(n+1).F(n) + F(n-1)^2$$

Graphical proof

. . .

Cassini's identity

Proposition:

$$F(n-1).F(n+1) = F(n)^2 + (-1)^{n+1}$$
 for $n \ge 1$

Let check the expression on the first ranks:

$$n = 1, F(0).F(2) = F(1)^{2} + 1 = 2$$

$$n = 2, F(1).F(3) = F(2)^{2} - 1 = 3$$

$$n = 3, F(2).F(4) = F(3)^{2} + 1 = 10$$

$$n = 4, F(3).F(5) = F(4)^{2} - 1 = 24$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

$$F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n + 2): $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2+F(n).F(n+1)$ Replace the last term using the recurrence hypothesis: $F(n)^2 = F(n-1).F(n+1) - (-1)^{n+1}$ $= F(n-1).F(n+1) + (-1)^{n+2}$

Proof (by induction)

- The **basis case** n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

 $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$

Replace the last term using the recurrence hypothesis:

$$F(n)^{2} = F(n-1).F(n+1) - (-1)^{n+2}$$

= F(n-1).F(n+1) + (-1)^{n+2}

Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

 $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$

Replace the last term using the recurrence hypothesis:

$$F(n)^{2} = F(n-1).F(n+1) - (-1)^{n+2}$$

= F(n-1).F(n+1) + (-1)^{n+2}

Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= $F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}$
Apply again the definition of Fibonacci sequence
 $F(n) + F(n-1) = F(n+1)$, we obtain:
 $F(n).F(n+2) = F(n+1)^2 + (-1)^{n+2}$

Computing F(n) fast

F(n) can be computed in $log_2(n)$ steps.

Proposition.

For all integers *n*: (a) $F(2n) = (F(n))^2 + (F(n-1))^2$; (b) $F(2n+1) = F(n) \times (2F(n-1)+F(n))$.

Details (a) – Proof by induction

The base case n = 1 is true because

$$F(2) = (F(1))^2 + (F(0))^2 = 2$$

$$F(3) = F(1) \times (2F(0) + F(1)) = 3$$

Assume that the property holds for *n*, for both F(2n) and F(2n+1).

$$F(2(n+1)) = F(2n+1) + F(2n)$$

= $(F(n))^2 + (F(n-1))^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n))^2 + (F(n-1))^2 + 2(F(n) \times F(n-1)) + (F(n))^2$
= $(F(n) + F(n-1))^2 + (F(n))^2$
= $(F(n+1))^2 + (F(n))^2$

We again start by applying the defining recurrence of the Fibonacci numbers on F(2(n+1)+1)

$$= F(2(n+1)) + F(2n+1)$$

= $(F(n+1))^2 + F(n)^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n+1))^2 + 2(F(n-1) + F(n)) \times F(n)$
= $(F(n+1))^2 + 2F(n+1) \times F(n)$

Pictorially

Pictorially (from one node)

Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas, starting at 2 and 1 .

For some reasons that will be clarified later, the sequence is shifted backwards (we take the convention L(-1) = 2).

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

•
$$L(n+1) = L(n) + L(n-1)$$

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

$$L(n+1) = L(n) + L(n-1)$$

n	-1	0	1	2	3	4	5	6	7	8	9	10
F(n)		1	1	2	3	5	8	13	21	34	55	
L(n)	2	1	3	4	7	11	18	29	47	76	123	

• There are² strong links with Fibonacci numbers.

In particular, we established before that:

 $F(n+2) = 1 + \sum_{k=0}^{n} F(k).$

We have similarly:

 $L(n+2) = 1 + \sum_{k=-1}^{n} L(k)$ since the basic step of the induction is still valid³. L(2) = L(-1) + L(0) + 1 = 2 + 1 + 1 = 4.

³It will be true for all the progressions where $u_1 = 1$

²of course

A first Property

We can also easily show that the Lucas number of order n is the sum of two Fibonacci numbers:

Proposition.

. . .

$$L(n) = F(n-1) + F(n+1)$$
 for $n \ge 1$

Let *check* this property on the first ranks:

$$n = 2$$
, $L(2) = F(1) + F(3) = 1 + 3 = 4$
 $n = 3$, $L(3) = F(2) + F(4) = 2 + 5 = 7$
 $n = 4$, $L(4) = F(3) + F(5) = 3 + 8 = 11$
 $n = 5$, $L(5) = F(4) + F(6) = 5 + 13 = 18$

Proof by induction

- The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.
- Induction step: Let assume the property holds at all ranks $k \le n$ and compute L(n+1): Apply the definition of Lucas' numbers: L(n+1) = L(n) + L(n-1)

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$
Apply now the definition of Fibonacci numbers for
 $F(n + 1) + F(n) = F(n + 2)$ and $F(n - 1) + F(n - 2) = F(n)$

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$
Apply now the definition of Fibonacci numbers for
 $F(n + 1) + F(n) = F(n + 2)$ and $F(n - 1) + F(n - 2) = F(n)$
replace them in the previous expression:
 $L(n + 1) = F(n + 2) + F(n)$

which concludes the proof.

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Proposition.

2.L(n) = F(n+3) + F(n-3)

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Proposition.

$$2.L(n) = F(n+3) + F(n-3)$$

Proof.

We start from
$$L(n) = F(n+2) - F(n-2)$$

 $F(n+2) = F(n+3) - F(n+1)$ and
 $F(n-2) = F(n-1) - F(n-3)$
 $L(n) = F(n+3) - (F(n+1) + F(n-1)) + F(n-3)$
 $2.L(n) = F(n+3) + F(n-3)$

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

⁴The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step: $5.L(n) = F(n+5) + F(n-5)$

⁴The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step:
$$5.L(n) = F(n+5) + F(n-5)$$

Thus, we guess the following expression.

Proposition⁴.

$$F(k-1).L(n) = F(n+k) + (-1)^{k-1}F(n-k)$$
 for $k \le n$

⁴The formal proof is let to the reader

Two other propositions

Proposition. $F(n+1) = \frac{1}{2}(F(1).L(n) + F(n).L(1))$

The proof comes from direct arithmetic manipulations: 2.F(n+1) = F(n+1) + F(n+1) = F(n+1) + F(n) + F(n-1) = L(n) + F(n) = F(1).L(n) + F(n).L(1)

Two other propositions

Proposition. $F(n+1) = \frac{1}{2}(F(1).L(n) + F(n).L(1))$

The proof comes from direct arithmetic manipulations: 2.F(n+1) = F(n+1) + F(n+1) = F(n+1) + F(n) + F(n-1) = L(n) + F(n) = F(1).L(n) + F(n).L(1)

The previous property can be extended for any k > 1Let compute the expression of F(k).L(n) + F(n).L(k)

A final natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive Fibonacci number tends to the Golden ratio: $\lim_{n\to\infty}\frac{F(n)}{F(n-1)}=\Phi$

As this result is obtained by solving the following equation $x^2 = x + 1$ (Φ is the positive root) and does not depend on the first rank, this holds also for the Lucas' numbers.

A last result: the Zeckendorf's Theorem

Objective: Study the Fibonacci numbers as a numbering system.

Let us first introduce a notation: $j \gg k$ iff $j \ge k + 2$. The Zeckendorf's theorem states that:

every positive integer *n* has a unique decomposition of the form: $n = F_{k_1} + F_{k_2} + \ldots + F_{k_r}$ where $k_1 \gg k_2 \gg \ldots \gg k_r$ and $k_r \ge 2$

Here, we assume that the Fibonacci sequence starts at index 1 and not 0, moreover, the decompositions will never consider F(1) (since F(1) = F(2)).

Derangements

Derangements represent one of the simplest forms of *avoidance problems*.

• A professor views it as a win-win strategy for the students in her class to grade each others' essays on *The Essential Truth in the Universe*.

The essays thereby get graded faster.

- Moreover, each student gets a chance to see how another student has interpreted some basic component of the human experience.
- The only complication is: How should we allocate essays among the students?

The process must ensure that no student is assigned her own essay to critique.

This challenge is known as a *derangement problem*.

Derangements

■ A *derangement* of a (finite) set A is a *bijection* f : A ↔ A that has no *fixed point*.

In other words, for every $a \in A$, we must have $f(a) \neq a$.

Clearly, derangements always exist (for n > 1).

One can just label the elements of set A by the numbers $0, 1, \ldots, |A| - 1$ and specify $f(a) = a + 1 \mod |A|$.

Playing around with a simple example

However, derangements are not so common! In fact, the set $A = \{0, 1, 2\}$ admits six self-bijections, but only two are derangements. Which ones?

Playing around with a simple example

However, derangements are not so common! In fact, the set $A = \{0, 1, 2\}$ admits six self-bijections, but only two are derangements. Which ones?

$$f(a) = a + 1 \mod 3$$
 : which maps $(0 \to 1), (1 \to 2), (2 \to 0)$

 $g(a) = a - 1 \mod 3$: which maps $(0 \rightarrow 2), (1 \rightarrow 0), (2 \rightarrow 1)$

How many derangements does an arbitrary *n*-element set A have? We denote this quantity by d(n).

Derangements

We compute d(n) for arbitrary integer n via the following recursion:

• For
$$n = 1$$
: $d(1) = 0$.

The unique bijection in this case consists only of a fixed point.

• For
$$n = 2$$
: $d(2) = 1$.

There are two bijections in this case

- the identity, which has two fixed points
- the swap, which is a derangement.

The inductive expression

For
$$n > 2$$
: $d(n) = (n-1)(d(n-1) + d(n-2))$:

To see this, note first that in any derangement, the first element of A, call it a, must map to some $b \neq a$.

- Note next that there are n-1 ways to choose b.
- There are d(n 2) derangements under which b maps to a.
 In those cases, we know everything about a and b, so we need worry only about the remaining elements of A.
 These n 2 elements can "derange" in all possible ways.
- There are *d*(*n*−1) derangements under which element *b* does not map to *a*.

An observation

The preceding reasoning verifies the following recurrence

$$d(n) = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ n(d(n-1) + d(n-2)) & \text{if } n > 2 \end{cases}$$

Solving the recurrence

There are several ways to solve this recurrence.

• We can reduce the bilinearity by a linear recurrence:

$$d(n) = \left\{ egin{array}{cc} 0 & ext{if } n=1 \ n \cdot d(n-1) + (-1)^n & ext{if } n>1 \end{array}
ight.$$

Interestingly, as the number of objects in the set to be deranged grows without bound.

The proportion of bijections that are derangements tends to the limit 1/e, where *e* is the base of natural logarithms.

Concluding remarks and take home message

We are more interested here by the dynamic process of *computing* the successive terms of the progressions than in their asymptotic limits when n is large...