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NP Problem Certificates as Proofs

What do proofs have to do with computational complexity?

Alternative definition of NP

A language L ∈ NP if it has a polynomial time verifier V .

That is, V is a polynomial time TM such that:

If x ∈ L then there exists a certificate c such that V (x, c) = accept;

If x /∈ L then V (x, c) = reject for any string c.

The certificate c is a proof that x ∈ L.

The verifier checks that this proof is correct.
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Theorem Proving

“What is intuitively required from a theorem-proving procedure? First,
that it is possible to “prove” a true theorem. Second, that it is impos-
sible to “prove” a false theorem. Third, that communicating the proof
should be efficient, in the following sense. It does not matter how long
must the prover compute during the proving process, but it is essential
that the computation required from the verifier is easy.”

Goldwasser, Micali, Rackoff 1985
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Complexity of Theorem Proving

What types of statements (or solutions to problems) can be proven in this way?

How do we model an abstract theorem proving system in the most general
way?

What computational resources do we give the prover and verifier?

What type of interaction can they have?



Interactive Proof Systems Adding Randomness to the Picture Public Coins Complexity of IP

Interactive Proof Systems (Idea)

P : has unbounded power, goal to convince V a theorem is true

e.g., that x ∈ L
V : doesn’t trust P , instead has to verify the proof provided by P with
limited computational resources

e.g., polynomial time TM, . . .

P and V exchange messages with V eventually accepting P ’s proof, or
rejecting it as incorrect.
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Formalising the Interaction

Definition (k-round deterministic V ↔P interaction)

Let k ≥ 0, V : {0, 1}∗ → {0, 1}∗ ∪ {accept, reject} and P : {0, 1}∗ → {0, 1}∗.
A k-round deterministic V ↔P interaction on input x ∈ {0, 1}∗, denoted
(V ↔P )(x), is the sequence of strings a1, . . . , ak ∈ {0, 1}∗ such that:

a1 = V (x)

a2 = P (x, a1)

...

a2i+1 = V (x, a1, . . . , a2i) for 2i < k

a2i+2 = P (x, a,1 , . . . , a2i+1) for 2i+ 1 < k.

The output of the interaction, denoted out[(V ↔P )(x)], is defined as
V (x, a1, . . . , ak), which is required to be in {accept, reject}.
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Deterministic Interactive Proof Systems

Definition (dIP)

A language L has a k-round deterministic Interactive Proof system if there’s a
deterministic TM V that, on input x, a1, . . . , ai, runs in time poly(n) and
satisfies:

Completeness: x ∈ L =⇒ ∃P out[(V ↔P )(x)] = accept;

Soundness: x /∈ L =⇒ ∀P out[(V ↔P )(x)] = reject.

The class dIP[k] contains all languages with a k-round deterministic
Interactive Proof system. We define

dIP = dIP[poly(n)] :=
⋃
c

dIP[nc],

allowing the number of rounds to depend on n = |x|.

Recall: no assumption of computational power of P .

Messages satisfy |ai| ∈ poly(n). (Why?)
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Example: dIP protocol for 3SAT

Recall 3SAT: Boolean formulae F = C1 ∧C2 ∧ · · · ∧Cm where each clase Ci is
disjunction of 3 literals, e.g. C1 = (x1 ∨ x̄4 ∨ x̄3).

A simple interactive proof system:

The Verifier asks the Prover for the values of the literals in one clause at a
time and records the answers.

After 2m rounds, the verifier checks the provers answers are consistent and
each clause evaluates to true.

Clearly correct:

If F is satisfiable, P can prove it by correctly giving the values of the
literals.

If F not satisfiable, no way P can provide values making V accept.

But do we really need multi-round interaction here?
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dIP and NP

In the previous example we could just have asked for the full certificate. . .

Theorem

NP = dIP.

Proof (NP ⊆ dIP[2] ⊆ dIP):

The certificate/verifier definition of NP is essentially a 2-round
deterministic proof system.

Given a polynomial time verifier V ′ for a language L:

a1 = V (x) = ε
a2 = P (x, ε) = c
V (x, ε, c) = V ′(c) = accept if c a valid certificate, reject otherwise.

V clearly polynomial time; completeness and soundness satisfied by
definition of polynomial time verifier.
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NP = dIP

Proof (dIP ⊆ NP):

Assume L ∈ dIP and let V be the dIP Verifier for L.

For any x ∈ L we use, as a polynomial-time verifiable certificate, the
transcript of the k-round interaction causing V to accept:
c = (a1, . . . , ak), where k is polynomial in n.

This can be verified in polynomial time by checking that V (x) = a1,
V (x, a1, a2) = a3, . . . , V (x, a1, . . . , ak) = accept.

If x ∈ L then such a certificate exists and can be verified in polynomial
time.

Conversely, if a certificate satisfies these conditions, we can define a prover
P satisfying P (x, a1) = a2, P (x, a1, a2, a3) = a4, etc. This satisfies
out[(V ↔P )(x)] = accept so x ∈ L.
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Beyond Deterministic Proof Systems?

The more complex interaction model we defined didn’t give us any more
power than the simple certificate-verifier proof system of NP.

Is that surprising?

How could we go beyond dIP to obtain a benefit from interaction?

Give more power to the Verifier (e.g., non-determinism, probabilistic
choices, . . . ).
Allow multiple independent provers.
. . .
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Probabilistic Verifiers

We will allow the Verifier to make probabilistic choices in verifying a proof.

Intuitively: V may ask P questions at random, making it harder for P to
cheat. . .

but we’ll need to modify the completeness and soundness requirements.

We allow V to be probabilistic Turing machine.

Formally, M = (K,Σ,Γ, δ0, δ1, s,H), where the transitions δ0 and δ1 are
chosen with probability 1/2.
Equivalently: a probabilistic Turing machine is a deterministic Turing
machine with an extra tape containing random bits.

Its output is a random variable over the random bits on that tape.

Claim

For every polynomial-time probabilistic Turing machine M there exists a
deterministic Turing machine N and a computable polynomial p such that

∀x, y ∈ {0, 1}∗, Pr[M(x) = y] = Pr
r∈{0,1}p(n)

[N(x, r) = y].
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(Probabilistic) Interactive Proof Systems

k-round probabilistic V ↔P interaction

Let k ≥ 0 and p be a computable polynomial. On input x ∈ {0, 1}∗, the
interaction now proceeds as follows:

1 V is given (or chooses) a random string r ∈ {0, 1}p(n) with probability
Pr(r) = 1/2p(n).

2 V and P exchange messages to obtain the following sequences of strings
a1, . . . , ak ∈ {0, 1}∗:

a1 = V (x, r)

a2 = P (x, a1)

a3 = V (x, r, a1, a2)

a4 = P (x, a1, a2, a3)

...

The output of the interaction, out[(V ↔P )(x)] = V (x, r, a1, . . . , ak) is now a
random variable over r.
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Probabilistic Verifiers and IP

We can no longer ask for perfect completeness and soundness: we would
recover dIP.

Instead: V should correctly accept/reject with high probability.

Definition (IP)

A language L has a k-round probabilistic Interactive Proof system if there’s a
deterministic TM V and polynomial p that, on inputs x, r, a1, . . . , ak runs in
time poly(n) and satisfies:

Completeness: x ∈ L =⇒ ∃P Pr[out(V ↔P )(x) = accept] ≥ 2/3;

Soundness: x /∈ L =⇒ ∀P Pr[out(V ↔P )(x)] = reject] ≥ 2/3,

where the probabilities are over r ∈ {0, 1}p(n).

The class IP[k] contains all languages with a k-round probabilistic Interactive
Proof system. We define

IP = IP[poly(n)] :=
⋃
c

IP[nc].
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Boosting the Correctness

The bounds of 2/3 are arbitrary!

Lemma

The definition of IP remains unchanged if we replace 2/3 by 1− 1/2n
c

for any
fixed c > 0.

Proof (idea):

V and P repeat their interaction protocol some number m times.

V finally takes the majority output from the m repetitions.

By the Chernoff bound, the protocol succeeds with probability 1−1/2Ω(m).

m can be taken to be polynomial in n while maintaining an overall
polynomial time protocol.

This is a standard argument in the analysis of probabilistic algorithms.

Actually, here the repetitions can even be done in parallel to keep the same
number of rounds k.
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Does Randomness Help?

Does going from dIP to IP actually add anything?

Probabilistic Turing machines are not thought to be substantially more
powerful than deterministic Turing machines.

P vs. BPP
Does IP contain anything not in NP?
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Example: Graph (Non)isomorphism

Definition

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if they are the
same up to a relabelling of the vertices; i.e., if G1 = π(G2) for some
permutation π of the labels of the vertices. We write G1

∼= G2.
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Example: Graph (Non)isomorphism

Consider the languages:

ISO = {〈G1, G2〉 | G1
∼= G2}, NONISO = {〈G1, G2〉 | G1 6∼= G2}.

ISO ∈ NP: the permutation π is a certificate.

ISO not though to be in P, but also not thought to be NP-complete!

NONISO ∈ coNP, but not thought to be in NP.

Theorem

NONISO ∈ IP.
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Example: Graph (Non)isomorphism

The protocol is remarkably simple:

V : Pick i ∈ {1, 2} uniformly at random. Choose a random permutation π and
permute the vertices of Gi to obtain H = π(Gi). Send H to P .

P : Identify which of G1 or G2 was used to produce H. Let Gj be that graph.
Send j to V .

V : Accept if i = j; otherwise reject.

Proof of Completeness

Completeness: x ∈ L =⇒ ∃P Pr[out(V ↔P )(x) = accept] ≥ 2/3.

Proof: If G1 6∼= G2 then the above protocol gives Pr[V accepts] = 1 ≥ 2/3.
Indeed, since P can have unbounded power and H must be isomorphic to
exactly one of G1 and G2, this P can always exist (e.g., P can try all O(n!)
permutations).



Interactive Proof Systems Adding Randomness to the Picture Public Coins Complexity of IP

Example: Graph (Non)isomorphism

The protocol is remarkably simple:

V : Pick i ∈ {1, 2} uniformly at random. Choose a random permutation π and
permute the vertices of Gi to obtain H = π(Gi). Send H to P .

P : Identify which of G1 or G2 was used to produce H. Let Gj be that graph.
Send j to V .

V : Accept if i = j; otherwise reject.

Proof of Completeness

Completeness: x ∈ L =⇒ ∃P Pr[out(V ↔P )(x) = accept] ≥ 2/3.

Proof: If G1 6∼= G2 then the above protocol gives Pr[V accepts] = 1 ≥ 2/3.
Indeed, since P can have unbounded power and H must be isomorphic to
exactly one of G1 and G2, this P can always exist (e.g., P can try all O(n!)
permutations).



Interactive Proof Systems Adding Randomness to the Picture Public Coins Complexity of IP

Example: Graph (Non)isomorphism

The protocol is remarkably simple:

V : Pick i ∈ {1, 2} uniformly at random. Choose a random permutation π and
permute the vertices of Gi to obtain H = π(Gi). Send H to P .

P : Identify which of G1 or G2 was used to produce H. Let Gj be that graph.
Send j to V .

V : Accept if i = j; otherwise reject.

Proof of Completeness

Completeness: x ∈ L =⇒ ∃P Pr[out(V ↔P )(x) = accept] ≥ 2/3.

Proof: If G1 6∼= G2 then the above protocol gives Pr[V accepts] = 1 ≥ 2/3.
Indeed, since P can have unbounded power and H must be isomorphic to
exactly one of G1 and G2, this P can always exist (e.g., P can try all O(n!)
permutations).



Interactive Proof Systems Adding Randomness to the Picture Public Coins Complexity of IP

Example: Graph (Non)isomorphism

V : Pick i ∈ {1, 2} uniformly at random. Choose a random permutation π and
permute the vertices of Gi to obtain H = π(Gi). Send H to P .

P : Identify which of G1 or G2 was used to produce H. Let Gj be that graph.
Send j to V .

V : Accept if i = j; otherwise reject.

Proof of Soundness

Soundness: x /∈ L =⇒ ∀P Pr[out(V ↔P )(x) = reject] ≥ 2/3.

Proof:

If G1
∼= G2 then H is isomorphic to both G1 and G2, and could have been

obtained from either graph.

Hence, P can do no better than guessing i at random: Pr[V reject] ≥ 1/2.

This can be increased above 2/3 by repeating the protocol (in parallel or
sequentially), and accepting only if P is correct every time. For m
repetitions, one has Pr[V accepts] ≤ 1/2m.
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Discussion on NONISO

Since we don’t think NONISO ∈ NP, it seems randomness really does help!

We only needed 2 rounds to solve NONISO.

Is using poly(n) rounds ever useful?

How much more powerful are interactive proof systems?

If G1 6∼= G2, note that V only learns this fact, but not how G1 and G2 are
related (what π is)

This is the basis for zero-knowledge proofs, which have important
applications for cryptography

E.g., proving you know a password without revealing what the password is.
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Public vs. Private Coins

Our protocol for NONISO relied crucially on the fact that P didn’t know which
i ∈ {1, 2} V chose.

We defined private coin interactive proof systems: only V was given the
random string r.

We can also consider public coin interactive proof systems, where P can see
also the random bits V uses between each round.

Not unreasonable if we assume an all-powerful Prover and want to know
what proofs he can convince the Verifier to believe.

A priori this could make the prover more powerful or, conversely, restrict
how the Verifier can check the proof.
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Arthur-Merlin Interactions

Public coin interactive protocols are usually called Arthur-Merlin protocols.

Arthur has a random string r = (r1, r2, . . . ), with ri ∈ {0, 1}∗.
He sends the string ri he uses in each round.

We can consider that Arthur just successively sends random bits to Merlin.

At the end, he performs a final computation to decide to accept or reject.
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Arthur-Merlin

Definition (AM)

The class AM[k] is defined as the subset of IP[k] obtained when we restrict
ourselves to Verifiers V that are given random strings r = (r1, . . . , rdk/2e) and
satisfy, for all i ≥ 0, V (x, r, r1, a2, r2, . . . , a2i) = ri for all strings
a2, a4, . . . , a2i ∈ {0, 1}∗.

We call AM = AM[2].

That is:

V (x, r) = r1, V (x, r, r1, a2) = r2, etc.

Pr[V (x, r, r1, a2, . . . , ak) = accept] ≥ 2/3, etc.

Clearly, for all k AM[k] ⊆ IP[k].

How much power do we lose by going to public keys?
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Simulating Private Coins with Public Coins

Theorem (Goldwasser-Sipser, 1987)

For every f : N→ N with f(n) computable in time poly(n)

IP[f(n)] ⊆ AM[f(n) + 2].

Public coins can simulate private ones with only 2 extra rounds of
communication!

This should be surprising.

Corollary

AM[poly(n)] = IP.

Using private coins is convenient, but not change much.
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NONISO with Public Keys

Rather than proving the Goldwasser-Sipser theorem, let us instead sketch a
proof of the following result:

Theorem

NONISO ∈ AM.

Proof (idea):

Rephrase the problem quantitatively:

S = {H | H ∼= G1 or H ∼= G2}.

The size of S tells us is G1
∼= G2:

if G1 6∼= G2 then |S| = 2n!, if G1
∼= G2 then |S| = n!

We assume for simplicity that G1, G2 each have exactly n! isomorphic
graphs.

P must convince V that |S| is much larger than n!

Note that we can efficiently certify that a graph H is in S.
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Tool: Pairwise Independent Hash Functions

To do this, we make use of Hash functions.

Definition (Pairwise independent hash functions)

Let Hn,k ⊆ {h | h : {0, 1}n → {0, 1}k} be a set of functions. We say that
Hn,k is pairwise independent if for all x, x′ ∈ {0, 1}n with x 6= x′ and all
y, y′ ∈ {0, 1}k:

Pr
h∈Hn,k

[h(x) = y ∧ h(x′) = y′] = 1/22k.

This implies that Prh[h(x) = y] = 1/2k for all x, y.

Lemma

For all n, k > 0 there exist efficiently computable pairwise independent hash
functions.
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Set Lower Bound Protocol

We want a public coin protocol for the following problem:

Set Lower Bound Problem

Let S ⊆ {0, 1}n be a set such that the membership s ∈ S can be efficiently
certified, and K ∈ N.

Goal: P wants to convince V that |S| ≥ K. V should reject with good
probability if |S| ≤ K/2.

Clearly, solving this problem allows us to solve NONISO.

Idea:

V asks P to find a x ∈ S such that h(x) = y, for randomly chosen h, y.

Such an x may not exist, but the probability it does exist is larger if |S| is
larger.

If x exists, P can find it (unbounded power), and V can easily check
h(x) = y.

This occurs with higher probability if |S| ≥ K.
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Set Lower Bound Protocol

Let k be an integer satisfying 2k−2 < K ≤ 2k−1 so that 1/4 < K/2k ≤ 1/2.

V : Randomly pick a h ∈ Hn,k and a y ∈ {0, 1}k. Send h, y to P
(equivalently, the coins used to pick them).

P : Try to find an x ∈ S such that h(x) = y. Send x to V , and also a
certificate that x ∈ S.

V : Verify efficiently that x ∈ S and h(x) = y then accept; otherwise reject.

Proof (soundness): Assume |S| ≤ K/2 (so V should reject).

V can only be made to accept if ∃x : h(x) = y, i.e. if y ∈ h(S).

Pr[V accepts] = Pr[randomly chosen y ∈ h(S)]

= |h(S)|/2k

≤ |S|/2k

≤ K

2 · 2k
=

(
1

2

)(
K

2k

)
.
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Set Lower Bound Protocol

Proof (completeness): Assume |S| ≥ K (so V should accept).
For simplicity, further assume |S| ≤ 2k−1 (we had K ≤ 2k−1).
Assume P follows the protocol. What is the probability V accepts?

Pr[V accepts] = Pr[∃x ∈ S : h(x) = y]

= Pr[∨x∈S h(x) = y]

≥
∑
x∈S

Pr[h(x) = y]−
∑

x,x′∈S:x6=x′

Pr[h(x) = y and h(x′) = y]

=
∑
x∈S

2−k −
∑

x,x′∈S:x 6=x′

2−2k

= |S|2−k − |S|(|S| − 1)

2
2−2k

≥ |S|/2k ·
(
1− |S|/2k+1

)
≥ K/2k · (1− 2k−1/2k+1)

=

(
3

4

)(
K

2k

)
.
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Set Lower Bound Protocol

We have:

if |S| ≤ K/2, Pr[V accepts] ≤ 1
2 ·

K
2k ;

if |S| ≥ K, Pr[V accepts] ≥ 3
4 ·

K
2k .

Since 1/4 < K/2k ≤ 1/2, the difference 1
4 ·

K
2k > 1/16.

This isn’t quite what we want, but:

Recall V knows K/2k.

Since there’s a nonzero gap between the probabilities, it can be amplified:

V and P run the protocol m times in parallel.
V accepts if the protocol accepts in at least 5

8
× K

2k
of the repetitions.

One then has Pr[V accepts] > 1/2 if |S| ≥ K, and Pr[V accepts] < 1/2 if
|S| ≤ K/2.
This can be amplified to above 2/3 with further repetition.
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Remarks on the Goldwasser-Sipser Theorem

By doing all repetition in parallel, we have a 2-round protocol for the Set
Lower Bound problem.

We then indeed have NONISO ∈ AM.

A similar approach can be used to prove IP[k] ⊆ AM[k + 2].

S corresponds (roughly) to the set of possible messages a private coin
verifier could send.

P has to prove that certain messages are likely to be sent by a private coin
verifier, and that a private coin verifier is likely to accept.

One proceeds round by round. . . There are some technicalities, but this
captures the main idea.

Even though it seems like public coins make it harder for the Verifier, this isn’t
really the case !
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Collapsing the Hierarchy

We could solve NONISO with a constant number of rounds (2).

What kind of problem might we need more rounds for?

Theorem

For k ≥ 2 a constant, AM[k] = AM[2] = AM.

This collapse is again somewhat surprising!

We leave proving it as an exercise for later.

Corollary

For all k ≥ 2 a constant, IP[k] ⊆ AM[k + 2] = AM.

Careful: Only for constant k; doesn’t imply IP = AM[poly(n)] = AM!
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Reflection on Arthur-Merlin Proofs

Despite the apparent differences, we saw public and private coins were
roughly as useful as each other for theorem proving.

We have the following inclusions:

NP ⊆ AM[2] = AM[k] ⊆ IP

⊆ ?

Another natural intermediate class is MA (between NP and AM).

“Probabilistic analogue of NP”.
We’ll look at that as an exercise if we have time.

How big is IP?
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IP = PSPACE

It seems difficult to find problems in IP that require a number of rounds
growing with n.

For some time, it was suspected that AM = IP. . .

Theorem (Shamir, 1990)

IP = PSPACE.

We will sketch only IP ⊆ PSPACE.

Proving the other direction is somewhat more involved.

See, e.g., Sipser’s textbook, or “Computational Complexity: A Modern
Approach” by Arora and Barak.
Involves interesting techniques, e.g., arithmetization of Boolean formulas.
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IP ⊆ PSPACE

Proof (idea):

The difficulty comes from fact that the Prover may have unbounded
computational power.

Easier if we return to the private coin setting.

Assume L ∈ IP and L’s verifier V uses exactly k ∈ poly(n) rounds.

Note we can assume also that each message ai has a polynomially
bounded length (say nc).

Then, the entire transcript Ak = (a1, . . . , ak) is of polynomial size.

Approach: we recursively enumerate all possible transcripts checking their
consistency with V and calculating the maximum probability that V would
accept x.
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IP ⊆ PSPACE: More Details

Define: Pr[V accepts x] = maxP Prr[out(V ↔P )(x) = accept].

If x ∈ L, then Pr[V accepts x] ≥ 2/3;

If x /∈ L, then Pr[V accepts x] ≤ 1/3.

We compute this, by recursively computing, for Ai = (a1, . . . , ai),

Pr[V accepts x | Ai] := max
P

Pr
r

[out(V ↔P )(x,Ai) = accept],

where out(V ↔P )(x,Ai) is the output of the probabilistic interaction
beginning with the transcript Ai.

If Ai is inconsistent with V , this is given probability 0.

Note that Pr[V accepts x] = Pr[V accepts x | A0].
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IP ⊆ PSPACE: More Details

We then compute this recursively:

Base case: Pr[V accepts x | Ak] = Prr[V (x, r, a1, . . . , ak) = accept].

For i < k odd:

Pr[V accepts x | Ai] = max
ai+1

Pr[V accepts x | (Ai, ai+1)];

For i < k even:

Pr[V accepts x | Ai] =
∑
ai+1

Pr
r

[V (x, r,Ai) = ai+1] Pr[V accepts x | (Ai, ai+1)].

We thus calculate recursively the performance of the optimal prover.

Since the recursion has polynomial depth we compute Pr[V accepts x] in
polynomial space.
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Discussion on Interactive Proofs

Interactive proof systems are actually very powerful, in particular when
we’re allowed a polynomial number of interactions.

Can certify proofs for problems (seemingly) much more difficult than NP.

Since IP = PSPACE, the Prover doesn’t need unbounded power:
polynomial space is enough!

But in other cases (e.g., the public coin protocol for NONISO), it seems
the prover needs to solve a harder problem than NONISO.

It needed to find a graph H isomorphic to either G1 or G2 such that
h(〈H〉) = y.
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More Directions with Interactive Proofs

There are many further directions one can go with interactive proofs:

Zero-knowledge proofs (e.g., for cryptography).

Multiple provers.

By providing random questions to several independent Provers, one can try
and play the Provers off against each other.
This turns out to significantly increase the power of Verifier.

Probabilistically checkable proofs (PCP).

Can one certify a proof just by checking parts of it at random, but without
seeing all of it?

Quantum interactive proof systems.

Used to provide the natural quantum analogue of NP.
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