Lecture 5 – Maths for Computer Science Lab. class, More on graphs

Denis TRYSTRAM MoSIG1

november 2020

Exercise 1. Vertex-degrees and the existence of paths

LESSON: Experience with graph-theoretic reasoning

Prove the following property.

Property.

If every vertex of graph G has degree $\geq d$, then G contains a simple path of length d.

Exercise 2. Graph-theoretic formulation of 2SAT.

Satisfiability problems deal with propositional formulae that are populated by entities that can assume the truth-values ${\rm TRUE}$ and ${\rm FALSE}.$

The entities are *logical variables*.

The *actual* entities that appear in each formula are *logical literals* (instances of logical variables) in either their *true* or *complemented* forms.

- In its true form, a literal evaluates to TRUE precisely when its associated variable does.
- In its complemented form, a literal evaluates to TRUE precisely when its associated variable evaluates to FALSE.

The following expression exemplify the notions.

formula: $\Phi = (\neg x \lor y) \land (x \lor \neg y)$ variables: x and y literals: x and y (true form); $\neg x$ and $\neg y$ (complemented form) $(\neg x \lor y) \land (x \lor \neg y)$ $\uparrow \uparrow \uparrow \uparrow$ complemented true true complemented literal literal literal literal

The Satisfiability Problem is specified by a propositional formula Φ that is a *conjunction of disjuncts of logical literals*.

The Satisfiability question is:

Can one assign truth-values to all of the logical variables of formula Φ in such a way that every disjunct evaluates to TRUE?

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$
(1)
where: • each clause $C_i = \ell_{i,1} \vee \ell_{i,2}$
• Φ has *n* logical variables

Example.

$$\Phi_1 = (a \lor \neg b) \land (b \lor \neg c) \land (c \lor \neg a)$$

We transform Φ into a directed graph $G(\Phi)$ that has 2n vertices and 2m arcs.

- For each logical variable x there is one vertex that represents the TRUE literal form of variable x, and a second vertex that represents the FALSE literal form, $\neg x$, of the variable.
- Each clause $C_i = (\ell_{i,1} \vee \ell_{i,2})$ is represented by a pair of arcs.
 - There is an arc $(\neg x_1 \rightarrow x_2)$.
 - Symmetrically, there is an arc $(\neg x_2 \rightarrow x_1)$.

All paths in $G(\Phi)$ represent logical implications.

Represent the graphs for Φ_1 and Φ_2 .

$$\begin{split} \Phi_1 &= (a \lor \neg b) \land (b \lor \neg c) \land (c \lor \neg a) \\ \Phi_2 &= (a \lor \neg b) \land (b \lor \neg c) \land (c \lor \neg a) \land (a \lor c) \land (\neg a \lor \neg c) \end{split}$$

The idea here is to solve 2SAT by a path problem in graph $G(\Phi)$.

Propositions.

- If $G(\Phi)$ contains a path from vertex x to vertex y, then it contains a path from vertex $\neg y$ to vertex $\neg x$.
- If G(Φ) contains a path from vertex x to vertex y, then for every truth assignment t that satisfies Φ, if t assigns variable x the truth-value TRUE, then t also assigns variable y the truth-value TRUE.

Deduce an algorithm for solving 2SAT.