
Paths in Graphs
Denis TRYSTRAM
Lecture notes Maths for Computer Science – MOSIG 1 – 2018

1 Preliminaries

1.1 Motivation et definitions

Graphs are a very natural mathematical structure used in Computer Science
(and many other fields). A graph is defined as a finite set of vertices, linked
according to a given relation. Formally, we define graph G as the pair (V,E).
V is the (finite) set of vertices. The set of edges E represents the relation
between the pairs of vertices. Usually, a graph is represented by a matrix
Ai,j = 1 if vertex i is linked with vertex j otherwise Ai,j = 0. This matrix is
called the adjacency matrix since it reflects the adjacency relations between
vertices. Graphs may be weighted, in this case we simply associate an integer
to each edge (similarly, we may also consider weights on the vertices).

Graphs are characterized by several notions which tell us about their
structures: degree of a vertex (number of adjacent vertices denoted by δ(x)
for x ∈ V), diameter (maximum distance between any pairs of vertices de-
noted by D) and chromatic index (minimum number of colors for coloring
the graph, where any adjacent vertices are associated with different colors).
This last characteristic is hard to compute while both others are easy to
obtain (in polynomial time).

We investigate in this lecture some well-known path problems for the
view point of both edges and vertices. There is a duality between vertices
and edges in graphs.

We refer naturally to the hamming distance (defined as the minimum
number of links to cross for reaching a vertex from another one for non-
weighted graphs) and to the natural distance obtained by the minimum sum
of weights of the crossed edges over the paths between two vertices.

Definition.
We define the connected relation between any two vertices x and y as the
existence of a path from x to y.
A connected graph is a graph whose vertices are all connected.

The connected relation is an equivalence relation (reflexive, symmetric
and transitive) and the quotient graph is the graph composed of its connected
components.

1.2 Study of particular graphs

Let us start by studying structural properties for some particular regular
graphs (i.e. those whose degree is equal on each vertex).

Definitions.

• A cycle Cn of order n is a graph where each vertex i is linked with i−1
and i+ 1 modulo n.

• The complete graph Kn of order n is the graph where each vertex is
linked with all the others.

• An hypercube of rank k is defined recursively as follows:

H0 is reduced to one vertex.

Hk is obtained by linking every pair of relative vertices of two Hk−1.

H2 and H3 are the two classical square and cube.

Let us compute for all these graphs their number of edges, degree and
diameter.

Both first graphs are very simple. They have the same number of edges.
The first graph (the cycle) has a constant degree and its diameter is linear
in the order of the graph while the second has a linear degree and a constant
diameter. The hypercube is an intermediate graph with logarithmic degree
and diameter. More precisely:

• Cn has a degree 2, n edges and a diameter of bn2 c, its chromatic index
is equal to 2 for even values of n and 3 for odd n.

• Kn has a degree n(n−1)
2 , n edges and a diameter equal to 1, its chromatic

index is equal to n.

• Hypercube Hk has n = 2k vertices (their numbers double at each
successive ranks from k to k + 1). Its vertices have all a degree k =
log2(n) since an edge is added to each vertex at each successive rank.

The number of edges is obtained by writing a rather simple recurrence
equation: The graph at rank k + 1 is obtained by two copies of Hk

plus 2k edges for linking each relative vertex, thus, Nk+1 = 2×Nk +2k

with N0 = 0. We obtain finally: Nk = k × 2k−1.

The diameter can be computed easily with the natural encoding of
the hypercube using Gray codes: each vertex is encoded in a binary
notation using O(log2(n)) bits and its adjacent vertices are obtained
by complementing each bit one after the other. Thus, there is a path
from any vertex in crossing at most log2(n) other vertices.

There exist other graphs with a constant degree and low diameters (like
the de Bruijn graph whose diameter is in also log2(n).

2

1.3 Some preliminary results

We describe in this section some graph problems that will be useful for
further proofs. We will use these results as a black box.

• Proposition. In any graph G = (V,E) the number of vertices of odd
degree is even.

Proof. First, let remark that the sum of all the degrees is even (more
precisely, Σx∈V δ(x) = 2|E| since each edge counts exactly for two
vertices – its extremities).

Alternatively, this result can be proved by applying the Fubini’s princi-
ple using the adjacency matrix. The two ways of counting the non-zero
elements are by rows (giving the sum of degrees) and globally .

Now, decompose this sum into even and odd degrees.

Σx∈V δ(x) = Σx∈Vevenδ(x) + Σx∈Vodd
δ(x).

As Σx∈Vevenδ(x) is obviously even as the sum of even numbers, Σx∈Vodd
δ(x)

should also be even.

Thus, the number of odd vertices is even.

• Perfect matchings. Amatching is a set of edges that have no vertices
in common.

It is perfect if its vertices are all belonging to an edge (thus, the number
of vertices is even and the cardinality of the matching is exactly half
of this number).

Proposition. The number of perfect matchings in a graph of order
n = 2k grows exponentially with k.

Proof. by recurrence on k, let denote the number of perfect matchings
by Nk.

For k = 1, there is only one perfect matching N1 = 1 and for k = 2,
there are 3 different perfect matchings N2 = 3. For k, there are 2k− 1
possibilities for a vertex to choose an edge, which each leads to 3 perfect
matchings Nk = (2k − 1).Nk−1.

Thus, Nk is the product of the k first odd numbers.

However, determining a perfect matching of minimal weight in a weighted
graph can be obtained in polynomial time (using the Hungarian assign-
ment algorithm).

3

• Minimum Spanning Trees. (MST)

A spanning tree of a weighted graph G is a tree whose edges span all
the vertices of G.

Determining a minimal spanning tree can be done is linear time (in
the number of edges).

There are mainly two ways for constructing such a MST, each one
emphasizes a different propriety of the MST, namely, avoid cycles and
minimize the span. In both cases, the edges are sorted in increasing
order of weights. More precisely, the first one constructs a subtree
which partially spans the graph by adding at each step the minimum
neighboring edge while the other add successively the edges of minimal
weights that do not create a cycle.

• Shortest path problems.

Determining the shortest (or longest) path can be done in polynomial
time.

2 Path problems

The main interest of graphs is to determine paths, i.e. how vertices are
connected to each other (determine if they are connected, find the shortest
or the longest paths, count the number of edge disjoint paths, etc.).

There are two types of problems: those which concern the edges and those
which concern the vertices. In this sense, these problems are dual. However,
surprisingly, determining a tour (i.e. a cycle) that visits exactly once each
edge is an easy problem while determining a tour that visits exactly once
each vertex is hard.

3 Eulerian cycles

3.1 Existence

Let us first consider the problem of determining a cycle which visits all the
edges of a given (undirected) graph G = (V,E) exactly once. This problem
of determining if such a tour (called eulerian cycle) exists is one of the oldest
problem in the field of Operational Research (it was introduced in 1736). It
has been studied by the famous swiss mathematician Leonard Euler for the
specific case of a tour going through all the bridges of the Koenigsberg town.
The graph is called eulerian if it admits such an eulerian cycle. The solution
of this problem is characterized by the following proposition.

4

Proposition. A connected graph is eulerian iff all its vertices have an even
degree.

We distinguish below two types of proofs based on the same claims, one
is simply the existence while the other one provides a solution. Let us first
establish three basic claims (elementary facts) that will be useful.

Claim 1. if all the degrees are even (and not null) then there exists a cycle.

Claim 2. A tour is an union of disjoint cycles.

Claim 3. If we remove a cycle in a tour then the degrees remain even.

The necessary condition of the proposition is straightforward. Let us
focus on the sufficient condition.

Proof 1 (existence).
By contradiction, let us assume that all the vertices of a connected graph

are even and there is no tour that contains all the edges. Let consider a tour
with a maximum number of edges. If we remove its edges, it remains some
edges and from Claim 3 they are even. Then, from Claim 1, there exists a
cycle within these remaining edges (say Γ). The contradiction comes from
Claim 2 since the union of the maximal tour plus the cycle Γ is another tour
which contains more edges than the initial one.

This proof can be adapted in a constructive way and thus, leads to an algo-
rithm. It is as follows:
Proof 2 (constructive). By induction on the number of edges.

• The basis case is simple to verify for m = 2 (where two vertices linked
by two edges correspond to the cycle of minimal length).

• Let consider a connected graph with m+ 1 edges where all its vertices
have an even degree. Let assume that the property holds for connected
graphs of even vertices with k edges (k ≤ m), which means there exist
eulerian tours in these sub-graphs.

From Claim 1, there exists a cycle (let denote it by Γ described by
its successive vertices) and consider the sub-graph of G without the
edges of Γ: G′ = (V −Γ, E′). By induction hypothesis, there exists an
eulerian cycle Ci in each connected component of G′ (from Claim 3).
The eulerian tour of G is obtained by the concatenation of pieces of Γ
and the eulerian cycles in the successive Ci.

5

3.2 Chinese postman problem

Let us now present the more general problem of determining a cycle that
contains all the edges in any graph, in particular when there exist some odd
vertices. From the previous section, we know that there is no eulerian cycle
in this case and thus, any feasible solution should duplicate some edges. The
problem is to duplicate the minimum. This problem is known as the chinese
postman and it is described below (in a french equivalent version).

A postman moved recently from Grenoble to a small village in the country
side. He asked himself how to organize his daily tour by bike for distributing
the letters in the shortest possible time. The director of the post office gives
him the map and fortunately, the postman had some old souvenir of previous
lectures in Graph Theory. The tour starts from the post office and of course,
the postman has to go through every roads for distributing the letters before
coming back to his office. The underlying graph is G = (V,E) where V is
the (finite) set of cross points and E is the set of the links between the cross
roads weighted by the distances.

Fig. 1 presents an example of the chinese postman problem.

Figure 1: Example of an instance of the chinese postman with 10 cross
vertices.

This problem may be formulated mathematically in term of eulerian cy-
cles. Intuitively, the basic idea is to duplicate some edges that are carefully
chosen in order to use the previous construction of an eulerian tour of sec-
tion 2.1 that will help the postman to determine the optimal tour (of minimal
length) using some simple mathematical properties.

First, we know that there is an even number of odd vertices. Considering
the previous instance of the postman problem, there are 4 such vertices
(represented in grey in Fig. 2).

As there exists a path between any pair of vertices of odd degree in
Vodd, we consider the complete graph whose vertices are the odd degree

6

Figure 2: The 4 vertices with an odd degree in the previous instance.

vertices weighting the edges with the shortest paths (denoted by Kodd). As
we mentioned in the preliminary properties, computing the shortest paths is
a classical problem, which can be solved in polynomial time.

Figure 3: The minimum weight perfect matching labelled by the shortest
distances between the vertices of Vodd.

Then, it is possible to do the correspondence between the optimal solution
of the postman problem and a perfect matching of minimal weight in Kodd

by duplicating the edges of the minimal perfect matching.
The main steps of the algorithm for determining the optimal tour are the

following:

• Consider the complete graph with the odd vertices and compute its
weight by the shortest paths. Compute a perfect matching of minimal
weight between these vertices.

• Duplicate all the edges along the paths of this matching.

• Determine an eulerian tour in this new graph with even degrees.

The optimality of this algorithm comes from the fact that the duplicated
edges are the minimum possible ones. Finally, all the vertices of the new

7

Figure 4: Final step: adding the edges of the minimum perfect matching.

graph are even since the degree of the odd vertices in G is augmented by 1
(extremities of the paths) and the other even vertices which are intermediate
vertices of the paths remain even.

4 Hamiltonian tours

Let us now turn to the problem of cycles going through the vertices of a
given graph instead of edges.

Definition. An hamiltonian cycle is a tour that visits all vertices exactly
once.

This problem is the traveling salesman problem, called TSP in short. It
corresponds to determine a minimal hamiltonian cycle in a weighted com-
plete graphs Kn. Obviously, Kn is hamiltonian (it exists n! such hamiltonian
paths), thus, the question here is to determine the minimum one.

TSP is a classical problem in Operational Research. Let us consider a
saleswoman who wants to organize the visit of her clients as best as possible.
It consists in visiting them in various cities with her vehicle. Of course, she
must go in every city and her objective is to minimize the total distance done
in the tour. The only information she has is the list of the cities and a map
with all inter-cities distances. We assume a Euclidian distance (for instance
the weights correspond to number of kilometers between two cities). This
property means that the straight line is always the minimum distance, or
in other words that the distance between two vertices/cities is larger if the
path is going through any other vertex.

Proposition. The solution of Christofides algorithm is not worse than 3
2

time the optimal tour.

Let us construct an efficient solution for this problem. It is well-known
that TSP is a hard problem, that means we can not expect a polynomial

8

time algorithm which solves exactly the problem, unless P = NP. Fig. 9
presents an example of euclidian TSP with n = 7 cities.

Figure 5: Example of an instance of TSP with 7 cities.

Let us construct a good solution (not too far from the optimal) in poly-
nomial time. Let us denote by ωG the weight of graph G (i.e. the sum of the
weights on its edges). The Chritofides algorithm proceeds in three steps.

Step 1. Determine a minimal weight spanning tree T ∗. As we recalled
in the preliminaries, a minimal weight spanning tree can be determined in
polynomial time.

ωT ∗ is a lower bound of the value of the optimal tour ωH∗ . Indeed, H∗ is
a cycle, then, removing any edge in H∗ leads to a chain, which is a particular
spanning tree. As T ∗ is the minimal spanning tree, we have: ωT ∗ ≤ ωH∗ .

Figure 6: Construction of an optimal spanning Tree T ∗.

Step 2. Consider now the set Vodd of the vertices of T ∗ whose degrees
are odd.

We proved in the preliminary properties that the cardinality of Vodd is
even.

Let us construct the perfect matching C∗ of minimum weight between the
vertices in Vodd. Fig. 7 shows all possible perfect matchings on the previous
example, the optimal one (with minimal weight) is represented in bold.

9

Figure 7: The three different perfect matchings on the set of four vertices of
odd degree. The optimal one is represented in bold (the two others are in
dashed and dot lines).

Fig. 8 illustrates the graph obtained by considering the edges of both T ∗

and C∗.

Figure 8: Adding the optimal perfect matching C∗ to the minimal spanning
tree T ∗.

Let us now determine a lower bound of the optimal tour H∗ (represented
in Fig. 9).

2ωC∗ is a lower bound of the value of the optimal tour (ωC∗ ≤ 1
2ωH∗).

Indeed, consider first the perfect matching C∗. As its vertices belong to
H∗, ωC∗ is lower than the piece of hamiltonian tour contained between these
vertices because of the euclidian property (see Fig. 10). Similarly for the
complementary perfect matching C (Fig. 11). Thus, the weight of the cycle
formed by the concatenation of both perfect matchings is lower than the
hamiltonian tour ωC∗ ⋃

C ≤ ωH∗ . Moreover, as C∗ is the minimum perfect
matching, we have ωC∗ ≤ ωC , this concludes the proof.

Step 3. All the vertices of T ∗ ∪ C∗ have an even degree since we added
an edge of C∗ to every odd degree vertices of T ∗. We are now going to
transform this graph by replacing iteratively the high degree vertices by
shortcuts, which decreases the degree until reaching 2.

While it exists a vertex of degree greater than 4, we remove two of these
consecutive edges and replace them by the opposite edge of this triangle
without disconnecting the graph. There are 2k ways to remove 2 edges and
replace them by the triangle edge. Some of them disconnect the graph and

10

Figure 9: An optimal hamiltonian cycle H∗.

Figure 10: Perfect matching C∗ between the vertices of odd degrees.

thus, must be avoided. Fig. 12 shows such a transformation on the previous
example, Fig. 13 shows a valid transformation.

This process leads to a feasible tour. Such transformations do not in-
crease the total weight.

Finally, as ωT ∗ ≤ ωH∗ and ωC∗ ≤ 1/2ωH∗ , we deduce that the value of
such a tour is lower than 3/2ωH∗ .

11

Figure 11: Cycle C∗
⋃
C (in dashed and bold).

Figure 12: Reduction of the degree in T ∗
⋃
C∗, disconnected solution.

Figure 13: Reduction of the degree in T ∗
⋃
C∗, connected solution.

12

