Fundamental Computer Science

Giorgio Lucarelli giorgio.lucarelli@imag.fr

February 5, 2018

- ► Random Access Memory
 - ► access any position of the tape in a single step

- ► Random Access Memory
 - access any position of the tape in a single step
- ▶ we also need:
 - ► finite number of *registers* → manipulate addresses of the tape
 - ightharpoonup program counter ightharpoonup current instruction to execute

▶ program: a set of instructions

Random Access Turing Machines: Instructions set

instruction	operand	semantics
read	j	$R_0 \leftarrow T[R_j]$
write	j	$T[R_j] \leftarrow R_0$
store	j	$R_j \leftarrow R_0$
load	j	$R_0 \leftarrow R_j$
load	= c	$R_0 = c$
add	j	$R_0 \leftarrow R_0 + R_j$
add	= c	$R_0 \leftarrow R_0 + c$
sub	j	$R_0 \leftarrow \max\{R_0 + R_j, 0\}$
sub	= c	$R_0 \leftarrow \max\{R_0 + c, 0\}$
half		$R_0 \leftarrow \lfloor \frac{R_0}{2} \rfloor$
jump	s	$\kappa \leftarrow s$
jpos	s	if $R_0 > 0$ then $\kappa \leftarrow s$
jzero	s	if $R_0 = 0$ then $\kappa \leftarrow s$
halt		$\kappa = 0$

▶ register R_0 : accumulator

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k,\Pi)$, where

- ightharpoonup k > 0 is the finite number of registers, and
- $ightharpoonup \Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k,\Pi)$, where

- ightharpoonup k > 0 is the finite number of registers, and
- $ightharpoonup \Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Notations

- lacktriangle the last instruction π_p is always a *halt* instruction
- $(\kappa; R_0, R_1, \dots, R_{k-1}; T)$: a **configuration**, where
 - κ: program counter
 - ▶ R_j , $0 \le j < k$: the current value of register j
 - ► T: the contents of the tape (each T[j] contains a non-negative integer, i.e. $T[j] \in \mathbb{N}$)
- ▶ halted configuration: $\kappa = 0$

5: halt

```
1: load 1 (1;0,5,3;\emptyset) 2: add 2 3: \mbox{ sub } = 1 4: store 1
```

5: halt

```
(1;0,5,3;\emptyset) \vdash (2;5,5,3;\emptyset) \vdash (3;8,5,3;\emptyset) \vdash (4;7,5,3;\emptyset)
1: load 1
                                           \vdash (5; 7, 7, 3; \emptyset) \vdash (0; 7, 7, 3; \emptyset)
2: add 2
3: sub = 1
4: store 1
                                                     R_1 \leftarrow R_2 + R_1 - 1
5: halt
                       (1; 0, 7; \emptyset)
1: load 1
2: jzero 6
3: sub = 3
4: store 1
5: jump 2
6: halt
```

3: sub = 3

4: store 1

5: jump 2 6: halt

 \vdash $(2; 1, 1; \emptyset) \vdash (3; 1, 1; \emptyset) \vdash (4; 0, 1; \emptyset) \vdash (5; 0, 0; \emptyset)$

 \vdash $(2;0,0;\emptyset) \vdash (6;0,0;\emptyset) \vdash (0;0,0;\emptyset)$

```
(1;0,5,3;\emptyset) \vdash (2;5,5,3;\emptyset) \vdash (3;8,5,3;\emptyset) \vdash (4;7,5,3;\emptyset)
1: load 1
                                                   \vdash (5; 7, 7, 3; \emptyset) \vdash (0; 7, 7, 3; \emptyset)
2: add 2
3: sub = 1
4. store 1
                                                               R_1 \leftarrow R_2 + R_1 - 1
5 halt
                            (1;0,7;\emptyset) \vdash (2;7,7;\emptyset) \vdash (3;7,7;\emptyset) \vdash (4;4,7;\emptyset) \vdash (5;4,4;\emptyset)
1. load 1
                                                \vdash (2; 4, 4; \emptyset) \vdash (3; 4, 4; \emptyset) \vdash (4; 1, 4; \emptyset) \vdash (5; 1, 1; \emptyset)
2: izero 6
3: sub = 3
                                                \vdash (2; 1, 1; \emptyset) \vdash (3; 1, 1; \emptyset) \vdash (4; 0, 1; \emptyset) \vdash (5; 0, 0; \emptyset)
4: store 1
                                                \vdash (2: 0, 0: \emptyset) \vdash (6: 0, 0: \emptyset) \vdash (0: 0, 0: \emptyset)
5: jump 2
6: halt
                                                      while R_1 > 0 do R_1 \leftarrow R_1 - 3
```

Write a program for a Random Access Turing Machine that multiplies two integers.

Tip: assume that the initial configuration is $(1;0,a_1,a_2,0;\emptyset)$

Write a program for a Random Access Turing Machine that multiplies two integers.

Tip: assume that the initial configuration is $(1;0,a_1,a_2,0;\emptyset)$

- 1: while $R_1 > 0$ do
- 2: $R_1 \leftarrow R_1 1$
- 3: $R_3 \leftarrow R_3 + R_2$

Write a program for a Random Access Turing Machine that multiplies two integers.

Tip: assume that the initial configuration is $(1;0,a_1,a_2,0;\emptyset)$

- 1: while $R_1 > 0$ do
- 2: $R_1 \leftarrow R_1 1$
- 3: $R_3 \leftarrow R_3 + R_2$

or (all computations should pass through R_0)

- 1: $R_0 \leftarrow R_1$
- 2: **while** $R_0 > 0$ **do**
- 3: $R_0 \leftarrow R_0 1$
- 4: $R_1 \leftarrow R_0$
- 5: $R_0 \leftarrow R_3$
- 6: $R_0 \leftarrow R_0 + R_2$
- 7: $R_3 \leftarrow R_3$

7: $R_3 \leftarrow R_3$

 Write a program for a Random Access Turing Machine that multiplies two integers.

Tip: assume that the initial configuration is $(1;0,a_1,a_2,0;\emptyset)$

```
1: while R_1 > 0 do
 2: R_1 \leftarrow R_1 - 1
 3: R_3 \leftarrow R_3 + R_2
                                                                  1: load 1
                                                                  2: izero 9
or (all computations should pass through R_0)
                                                                  3: sub = 1
                                                                  4: store 1
 1: R_0 \leftarrow R_1
                                                                  5: load 3
 2: while R_0 > 0 do
                                                                  6: add 2
 3: R_0 \leftarrow R_0 - 1
                                                                  7: store 3
 4: R_1 \leftarrow R_0
                                                                  8: jump 1
 5: R_0 \leftarrow R_3
                                                                  9: halt
 6: R_0 \leftarrow R_0 + R_2
```

Another exercise

▶ Write a program for a Random Access Turing Machine that finds the maximum of a sequence of ℓ non-zero positive integers. Tip: initial configuration $(1;0,\&a_1,0;a_1a_2...a_\ell0)$

Another exercise

▶ Write a program for a Random Access Turing Machine that finds the maximum of a sequence of ℓ non-zero positive integers. Tip: initial configuration $(1; 0, \&a_1, 0; a_1a_2 \dots a_\ell 0)$

```
1: read 1
```

2: jzero 11

3: sub 2

4: jzero 7

5: read 1

6: store 2

7: load 1

8: add = 1

9: store 1

10: jump 1

11: halt

Theorem

Every Random Access Turing Machine $M=(\kappa,\Pi)$ has an equivalent single tape Turing Machine $M'=(K,\Sigma,\Gamma,\delta,s,H)$.

If M halts on input of size n after t steps, then M' halts on after O(poly(t,n)) steps.

Theorem

Every Random Access Turing Machine $M=(\kappa,\Pi)$ has an equivalent single tape Turing Machine $M'=(K,\Sigma,\Gamma,\delta,s,H)$.

If M halts on input of size n after t steps, then M' halts on after O(poly(t,n)) steps.

- we pass through the multiple tape model
 - use k+3 tapes
 - ▶ tape 1: the contents of the tape of M
 - ▶ tape 2: the program counter
 - ▶ tape 3: auxiliary
 - ▶ tape 3 + j, $1 \le j \le k$: corresponds to R_j
- add appropriate delimiters
- simulate instructions

- ▶ add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by $\boldsymbol{1}$

Proof (sketch):

- ▶ add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by 1

▶ write 2

- 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
- 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
- 3. increase the contents of tape 2 (program counter) by 1

Proof (sketch):

- ▶ add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by 1

▶ write 2

- 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
- 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
- 3. increase the contents of tape 2 (program counter) by 1

▶ jpos 19

- 1. scan tape 4 (R_0)
- 2. if all cells are zero then increase the contents of tape 2 (program counter) by ${\bf 1}$
- 3. else replace the contents of tape 2 by 19

- \blacktriangleright the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ▶ initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)

- \blacktriangleright the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ▶ initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes

- \blacktriangleright the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ▶ initially: *n*
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- ► Thus, complexity polynomial in t and n

Proof (sketch):

- \blacktriangleright the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ▶ initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- ▶ Thus, complexity polynomial in t and n

Random Access is not more powerful !!!

Non-determinism

▶ the next step is **not unique**

deterministic computation

non-deterministic computation

A Non-deterministic Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

$$((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

A Non-deterministic Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

$$((K \setminus H) \times \Gamma) \times (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

- $ightharpoonup \Delta$ is not a function
 - \blacktriangleright a single pair of (q,σ) can lead to multiple pairs (q',σ')
 - \blacktriangleright the empty string ϵ is allowed as a transition symbol

A Non-deterministic Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a *subset* of

$$((K \setminus H) \times \Gamma) \times (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

- $ightharpoonup \Delta$ is not a function
 - \blacktriangleright a single pair of (q,σ) can lead to multiple pairs (q',σ')
 - \blacktriangleright the empty string ϵ is allowed as a transition symbol
- ► A configuration may *yield* several configurations in a single step
 - ightharpoonup is not necessarily uniquely identified

Definitions

Let $M=(K,\Sigma,\Gamma,\Delta,s,H)$ be a Non-deterministic Turing Machine.

We say that M accepts an input $w\in \Sigma^*$ if

$$(s, \underline{\sqcup} w) \vdash_M^* (h, u\underline{\sigma} v)$$

 $\text{ for some } h \in H\text{, } \sigma \in \Sigma \text{ and } u,v \in \Sigma^*.$

Definitions

Let $M=(K,\Sigma,\Gamma,\Delta,s,H)$ be a Non-deterministic Turing Machine.

We say that M accepts an input $w\in \Sigma^*$ if

$$(s, \underline{\sqcup}w) \vdash_{M}^{*} (h, u\underline{\sigma}v)$$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

We say that M recognizes (or semidecides) a language L if for each $w \in \Sigma^*$ the following holds: $w \in L$ if and only if M accepts w.

Definitions

Let $M=(K,\Sigma,\Gamma,\Delta,s,H)$ be a Non-deterministic Turing Machine.

We say that M accepts an input $w\in \Sigma^*$ if

$$(s, \underline{\sqcup}w) \vdash_{M}^{*} (h, u\underline{\sigma}v)$$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

We say that M recognizes (or semidecides) a language L if for each $w \in \Sigma^*$ the following holds: $w \in L$ if and only if M accepts w.

We say that M decides a language L if for each $w\in \Sigma^*$ the following two conditions hold:

- 1. there is natural number $N\in\mathbb{N}$ (depending on M and |w|) such that there is no configuration c satisfying $(s,\underline{\sqcup}w)\vdash^N_M c$
- 2. $w \in L$ if and only if $(s, \underline{\sqcup} w) \vdash_M^* (\underline{y}, u\underline{\sigma} v)$ for some $\sigma \in \Sigma$ and $u, v \in \Sigma^*$

Definitions (cont'd)

Let $M=(K,\Sigma,\Gamma,\Delta,s,H)$ be a Non-deterministic Turing Machine.

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for each $w \in \Sigma^*$ the following two conditions hold:

- 1. there is natural number $N\in\mathbb{N}$ (depending on M and |w|) such that there is no configuration c satisfying $(s,\underline{\sqcup}w)\vdash^N_M c$
- 2. $(s, \underline{\sqcup} w) \vdash_M^* (h, \underline{\sqcup} v)$ if and only if v = f(w)

▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p \cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p \cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers p and q non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p \cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers p and q non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- ► What does **non-deterministically** mean?

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p \cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers p and q non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- ► What does **non-deterministically** mean?
 - ▶ choose $(p,q) \in \{(1,1), (1,11), (1,111), \dots, (11,1), (11,11), \dots\}$

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p \cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers p and q non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- ► What does **non-deterministically** mean?
 - ▶ choose $(p,q) \in \{(1,1), (1,11), (1,111), \dots, (11,1), (11,11), \dots\}$
- ▶ How to transform the above machine to decide the same language?

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p,q \in \mathbb{N}$, i.e., $m=p\cdot q$. Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L=\{1^m:m \text{ is a composite number}\}$.
 - 1. choose two integers p and q non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept
- ► What does **non-deterministically** mean?
 - ▶ choose $(p,q) \in \{(1,1),(1,11),(1,111),\dots,(11,1),(11,11),\dots\}$
- ▶ How to transform the above machine to decide the same language?
 - 1. choose two integers p < m and q < m non-deterministically
 - 2. multiply p and q
 - 3. compare a with $p \cdot q$ and if they are equal then accept, else reject

Exercise

▶ Consider a set $A = \{a_1, a_2, \dots, a_n\}$ of positive integers and an integer $w \in \mathbb{N}$.

Give a Non-deterministic Turing Machine that *recognizes* the language $L=\{A'\subseteq A: \sum_{a_i\in A'}a_i=w\}.$

Exercise

- ▶ Consider a set $A = \{a_1, a_2, \dots, a_n\}$ of positive integers and an integer $w \in \mathbb{N}$. Give a Non-deterministic Turing Machine that recognizes the language $L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\}$.
- 1. choose non-deterministically a set $A' \subseteq A$
- 2. add the elements of A'
- 3. if they sum up to w, then accept

Exercise

- ▶ Consider a set $A = \{a_1, a_2, \dots, a_n\}$ of positive integers and an integer $w \in \mathbb{N}$. Give a Non-deterministic Turing Machine that *recognizes* the
 - Give a Non-deterministic Turing Machine that *recognizes* the language $L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\}$.
- 1. choose non-deterministically a set $A' \subseteq A$
- 2. add the elements of A'
- 3. if they sum up to w, then accept
- \blacktriangleright How to choose A' non-deterministically?
 - ightharpoonup produce all binary numbers of n digits
 - \blacktriangleright start from 00...0 and add 1 at each iteration

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

▶ Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)

tape 2: simulation tape 3: address

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

► Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)

tape 2: simulation tape 3: address

- ▶ data on tape 3:
 - each node of the computation tree of NDTM has at most c children: $c \leq |K| \cdot (|\Sigma| + 2)$
 - ▶ address of a node in $\{1, 2, \dots, c\}^*$

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - we perform a Breadth First Search of the computation tree

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - ▶ we perform a Breadth First Search of the computation tree
 - we need exponential time of steps with respect to NDTM!

Discussion

- ► Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- ▶ we pay this in computation time

Discussion

- ► Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- ▶ we pay this in computation time
- ▶ next lectures: we will see what does this mean

More exercises

- ▶ Give a Random Access Turing Machine that *decides* the language $L = \{a^nb^nc^n : n \ge 0\}.$
- ▶ Give a Random Access Turing Machine that *decides* the language $L = \{wcw : w \in \{a,b\}^*\}.$
- ▶ Give a Non-deterministic Turing Machine that *recognizes* the language $L = \{a^*abb^*aa^*\}$ (use simple machines).
- ▶ Give a Non-deterministic Turing Machine that *recognizes* the language $L = \{ww^Ruu^R: w, u \in \{a,b\}^*\}$ (give high-level definition).
- ▶ Consider a graph G = (V, E) and an positive integer k. Give a Non-deterministic Turing Machine that recognizes the language $L = \{V' \subseteq V : |V'| \ge k \text{ and } (u, v) \not\in E \text{ for any two } u, v \in V'\}$ (give high-level definition).