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Random Access Turing Machines

I Random Access Memory
I access any position of the tape in a single step

I we also need:
I finite number of registers → manipulate addresses of the tape
I program counter → current instruction to execute
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I program: a set of instructions
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Random Access Turing Machines: Instructions set

instruction operand semantics
read j R0 ← T [Rj ]
write j T [Rj ]← R0

store j Rj ← R0

load j R0 ← Rj

load = c R0 = c
add j R0 ← R0 +Rj

add = c R0 ← R0 + c
sub j R0 ← max{R0 +Rj , 0}
sub = c R0 ← max{R0 + c, 0}
half R0 ← bR0

2 c
jump s κ← s
jpos s if R0 > 0 then κ← s
jzero s if R0 = 0 then κ← s
halt κ = 0

I register R0: accumulator



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,Π), where

I k > 0 is the finite number of registers, and

I Π = (π1, π2, . . . , πp) is a finite sequence of instructions (program).

Notations

I the last instruction πp is always a halt instruction

I (κ;R0, R1, . . . , Rk−1;T ): a configuration, where
I κ: program counter
I Rj , 0 ≤ j < k: the current value of register j
I T : the contents of the tape

(each T [j] contains a non-negative integer, i.e. T [j] ∈ N)

I halted configuration: κ = 0
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Examples

1: load 1
2: add 2
3: sub =1
4: store 1
5: halt

(1; 0, 5, 3; ∅)

` (2; 5, 5, 3; ∅) ` (3; 8, 5, 3; ∅) ` (4; 7, 5, 3; ∅)
` (5; 7, 7, 3; ∅) ` (0; 7, 7, 3; ∅)

R1 ← R2 +R1 − 1

1: load 1
2: jzero 6
3: sub =3
4: store 1
5: jump 2
6: halt

(1; 0, 7; ∅) ` (2; 7, 7; ∅) ` (3; 7, 7; ∅) ` (4; 4, 7; ∅) ` (5; 4, 4; ∅)
` (2; 4, 4; ∅) ` (3; 4, 4; ∅) ` (4; 1, 4; ∅) ` (5; 1, 1; ∅)
` (2; 1, 1; ∅) ` (3; 1, 1; ∅) ` (4; 0, 1; ∅) ` (5; 0, 0; ∅)
` (2; 0, 0; ∅) ` (6; 0, 0; ∅) ` (0; 0, 0; ∅)

while R1 > 0 do R1 ← R1 − 3
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Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt
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Another exercise

I Write a program for a Random Access Turing Machine that finds
the maximum of a sequence of ` non-zero positive integers.
Tip: initial configuration (1; 0,&a1, 0; a1a2 . . . a`0)

1: read 1
2: jzero 11
3: sub 2
4: jzero 7
5: read 1
6: store 2
7: load 1
8: add =1
9: store 1

10: jump 1
11: halt
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Random Access Turing Machines

Theorem

Every Random Access Turing Machine M = (κ,Π) has an equivalent
single tape Turing Machine M ′ = (K,Σ,Γ, δ, s,H).

If M halts on input of size n after t steps, then M ′ halts on after
O(poly(t, n)) steps.

Proof (sketch):

I we pass through the multiple tape model
I use k + 3 tapes
I tape 1: the contents of the tape of M
I tape 2: the program counter
I tape 3: auxiliary
I tape 3 + j, 1 ≤ j ≤ k: corresponds to Rj

I add appropriate delimiters

I simulate instructions
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Random Access Turing Machines

Proof (sketch):

I add 4

1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to

add the numbers in tapes 8 and 4 (R0)
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

I write 2

1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)

2. copy the contents of tape 4 (R0) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

I jpos 19

1. scan tape 4 (R0)
2. if all cells are zero then increase the contents of tape 2 (program

counter) by 1
3. else replace the contents of tape 2 by 19
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Random Access Turing Machines

Proof (sketch):

I the size of the contents of all tapes cannot be bigger that a
polynomial to t and n

I initially: n
I at each step: the size of the contents is increased by at most a

constant c (instruction add = c)

I each instruction can be implemented in time polynomial in the size
of the contents of all tapes

I Thus, complexity polynomial in t and n

Random Access is not more powerful !!!
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Non-determinism

I the next step is not unique

•
•
•
•
•
•
...

•
•

start

accept or reject

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• accept

reject

non-deterministic computation



Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sextuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are as in the definition of the Deterministic
Turing Machine, and ∆ describes the transitions and it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified
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Non-deterministic Turing Machine

Definitions

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.
We say that M accepts an input w ∈ Σ∗ if

(s,tw) `∗M (h, uσv)

for some h ∈ H, σ ∈ Σ and u, v ∈ Σ∗.

We say that M recognizes (or semidecides) a language L if for each
w ∈ Σ∗ the following holds: w ∈ L if and only if M accepts w.

We say that M decides a language L if for each w ∈ Σ∗ the following
two conditions hold:

1. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration c satisfying (s,tw) `NM c

2. w ∈ L if and only if (s,tw) `∗M (y, uσv) for some σ ∈ Σ and
u, v ∈ Σ∗
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Non-deterministic Turing Machine

Definitions (cont’d)

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.

We say that M computes a function f : Σ∗ → Σ∗ if for each w ∈ Σ∗

the following two conditions hold:

1. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration c satisfying (s,tw) `NM c

2. (s,tw) `∗M (h,tv) if and only if v = f(w)



Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject
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2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject
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Exercise

I Consider a set A = {a1, a2, . . . , an} of positive integers and an
integer w ∈ N.
Give a Non-deterministic Turing Machine that recognizes the
language L = {A′ ⊆ A :

∑
ai∈A′ ai = w}.

1. choose non-deterministically a set A′ ⊆ A
2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration
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Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children: c ≤ |K| · (|Σ|+ 2)

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211
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Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree
I we need exponential time of steps with respect to NDTM!
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Non-deterministic Turing Machine

Discussion

I Non-deterministic Turing Machines seem to be more powerful than
deterministic ones

I we pay this in computation time

I next lectures: we will see what does this mean
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More exercises

I Give a Random Access Turing Machine that decides the language
L = {anbncn : n ≥ 0}.

I Give a Random Access Turing Machine that decides the language
L = {wcw : w ∈ {a, b}∗}.

I Give a Non-deterministic Turing Machine that recognizes the
language L = {a∗abb∗aa∗} (use simple machines).

I Give a Non-deterministic Turing Machine that recognizes the
language L = {wwRuuR : w, u ∈ {a, b}∗} (give high-level
definition).

I Consider a graph G = (V,E) and an positive integer k. Give a
Non-deterministic Turing Machine that recognizes the language
L = {V ′ ⊆ V : |V ′| ≥ k and (u, v) 6∈ E for any two u, v ∈ V ′}
(give high-level definition).


