Giorgio Lucarelli

giorgio.lucarelli@imag.fr

February 5, 2018


giorgio.lucarelli@imag.fr

» Random Access Memory
> access any position of the tape in a single step



Random Access Turing Machines

» Random Access Memory
> access any position of the tape in a single step

> we also need:
» finite number of registers — manipulate addresses of the tape
current instruction to execute

program counter

T1]|T[2)| T3] | T[] | 7[5 | T]6]

» program counter —»

tape

HEHEHH

registers

> program: a set of instructions



Random Access Turing Machines: Instructions set

instruction operand semantics

read j Ry + T[R7]

write j T[R]} +— Ry

store j R; < Ry

load J Ry + R;

load =C R() =cC

add ] RO “— Ro + RJ

add =c Ry <+ Ry +c

sub J Ry < max{Ry + R;,0}
sub =c Ry + max{Ry + ¢,0}
half Ry + ||

jump s K4S

jpos S if Rp > 0 then k < s
jzero S if Ry =0 then x + s
halt k=0

> register Ry: accumulator



|
A Random Access Turing Machine is a pair M = (k,II), where

» k > 0 is the finite number of registers, and

» Il = (my,ma,...,mp) is a finite sequence of instructions (program).



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,II), where
» k > 0 is the finite number of registers, and

» II = (m,m2,...,mp) is a finite sequence of instructions (program).

Notations

> the last instruction , is always a halt instruction
» (k;Ro,R1,...,Rr_1;T): a configuration, where
> Kk program counter
» R;, 0 <j < k: the current value of register j
» T': the contents of the tape
(each T[j] contains a non-negative integer, i.e. T[j] € N)

» halted configuration: x =0



load 1 (1;0,5,3;0)
add 2

sub =1

store 1

halt

AN



load 1 (1;0,5,3;0) + (2;5,5,3;0) F (3;8,5,3;0) F (4;7,5,3;0)
add 2 Fo(5;7,7,3;0) - (0;7,7,3;0)

sub =1

store 1

halt

AN



load 1 (1,0,5,3;0) + (2:5,5,3;0) F (3;8,5,3;0) = (4;7,5,3;0)
|_

1:

2: add 2 (5;7,7,3;0) + (0;7,7,3;0)
3: sub =1

4: store 1

5. halt Ry < Ry + Ry -1



load 1 (1;0,5,3;0) + (2;5,5,3;0) F (3;8,5,3;0) F (4;7,5,3;0)
add 2 Fo(5;7,7,3;0) - (0;7,7,3;0)
sub =1

store 1
halt R+ Ro+R;1—1

AN

load 1 (1;0,7;0)
: jzero 6

sub =3

: store 1

jump 2

. halt

S



1: load 1 (1;0,5,3;0) F (2;5,5,3;0) F (3;8,5,3;0) = (47,5,3;0)
2 add 2 Fo(5;7,7,3;:0) - (0;7,7,3;0)

3: sub =1

4: store 1

5: halt Ry + Ry+ Ry —1

1: load 1 (1;0,7:0) F (27,70) (3;7,7:0) - (4;4,7;0) = (5;4,4;0)
2: jzero 6 Foo(2:4,4;0) - (3;4,40) F (451,4;0) - (5;1,1;0)
3 owb =3 F@LL0)F (31,1,0) - (450,1:0) F (5:0,0;0)
4: store aon. A Ao

5: jump 2 |_ (2’ 07 07 @) |_ (6’ 07 07 @) |_ (07 0’ 07 0)

6: halt



1: load 1 (1;0,5,3;0) = (25,5,3;0) F (3;8,5,3;0) F (47,5,3;0)
2: add 2 FoO(5:7,7,3:0) F (0:7,7,3;0)
3: sub =1
4: store 1
5: halt Ri+ Ro+ Ry —1
1: load 1 (1;0,7:0) F (27,70) (3;7,7:0) - (4;4,7;0) = (5;4,4;0)
2: jzero 6 Foo(2:4,4;0) - (3;4,40) F (451,4;0) - (5;1,1;0)
3: sub =3 F@LL0)F (31,1,0) - (450,1:0) F (5:0,0;0)
4: store 1

F o (2:0,0;0) F (6;0,0;0) F (0;0,0;
5: jump2 (’ bl 7®) (’ b 7®) (7 b 70)
6: halt

while Ry >0do Ry «+ Ry — 3



» Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1;0, a1, as, 0; )



» Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1;0, a1, as, 0; )

1: while R; > 0 do
2: Ri«+ R —1
3: R3 < R3+ Ry



» Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1;0, a1, as, 0; )

1: while R; > 0 do
2: Ri«+ R —1
3: R3 < R3+ Ry

or (all computations should pass through Ry)

1: Ry« Ry

2: while Ry > 0 do
3: Ry« Ryp—1

Ry + Ry

R() (—Rg

Ro (—R0+R2
R3 + R3

N g s



Exercise

» Write a program for a Random Access Turing Machine that
multiplies two integers.
Tip: assume that the initial configuration is (1;0, a1, as, 0; 0)

1: while R, > 0 do
2: R1 — R1 -1
33 Ry« Rs3+ Ry

1: load 1
2: jzero 9
or (all computations should pass through Rg) 3 sub —1

1: Ry + Ry 4: store 1
2: while Ry > 0 do 5: load 3
3: Ro+ Ry —1 6: add 2
4 Ry <+ Ry 7 §tore 3
5. Rop<+ R3 8: jump 1
6: Ro<+ Ro+ Ro 9: halt
T: Rg — R3



» Write a program for a Random Access Turing Machine that finds
the maximum of a sequence of ¢ non-zero positive integers.
Tip: initial configuration (1;0, &a1,0;a1az ... a0)



» Write a program for a Random Access Turing Machine that finds
the maximum of a sequence of ¢ non-zero positive integers.
Tip: initial configuration (1;0, &a1,0;a1az ... a0)

1: read 1
2: jzero 11
3: sub 2
4: jzero 7
5: read 1
6: store 2
7: load 1
8: add =1
9: store 1
10: jump 1
11: halt



Every Random Access Turing Machine M = (k,I1) has an equivalent
single tape Turing Machine M’ = (K, %, T, 0, s, H).

If M halts on input of size n after t steps, then M’ halts on after
O(poly(t,m)) steps.



Random Access Turing Machines

Theorem

Every Random Access Turing Machine M = (k,II) has an equivalent
single tape Turing Machine M’ = (K, X, T, 6, s, H).

If M halts on input of size n after t steps, then M’ halts on after
O(poly(t,n)) steps.

Proof (sketch):

» we pass through the multiple tape model
use k + 3 tapes
tape 1: the contents of the tape of M
tape 2: the program counter
tape 3: auxiliary
tape 3+ 7, 1 < j < k: corresponds to R;

vVvyVvVYVvyvy

» add appropriate delimiters

» simulate instructions



Proof (sketch):
> add 4
1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)
store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

@



Random Access Turing Machines

Proof (sketch):
> add 4

1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)

2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)

3. store the result in tape 4

4. increase the contents of tape 2 (program counter) by 1

> write 2
1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)
2. copy the contents of tape 4 (Rp) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1



Random Access Turing Machines

Proof (sketch):
> add 4
1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

> write 2
1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)
2. copy the contents of tape 4 (Rp) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

> jpos 19
1. scan tape 4 (Ro)
2. if all cells are zero then increase the contents of tape 2 (program
counter) by 1
3. else replace the contents of tape 2 by 19



Proof (sketch):
» the size of the contents of all tapes cannot be bigger that a
polynomial to ¢t and n
> initially: n
» at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)



Random Access Turing Machines

Proof (sketch):
> the size of the contents of all tapes cannot be bigger that a
polynomial to t and n
> initially: n
» at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)
» each instruction can be implemented in time polynomial in the size
of the contents of all tapes



Random Access Turing Machines

Proof (sketch):

> the size of the contents of all tapes cannot be bigger that a
polynomial to t and n
> initially: n
> at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)
» each instruction can be implemented in time polynomial in the size
of the contents of all tapes

» Thus, complexity polynomial in ¢ and n



Random Access Turing Machines

Proof (sketch):

> the size of the contents of all tapes cannot be bigger that a
polynomial to ¢t and n
> initially: n
> at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)

» each instruction can be implemented in time polynomial in the size
of the contents of all tapes

» Thus, complexity polynomial in ¢ and n

Random Access is not more powerful !!!



» the next step is not unique

C ® start f . \
¢ I
C [ ] [ . L] [ ] \
C [ ] . [‘ L] L]
C [ ] ‘. f [ ] \
° reject o °
L] L] \
C ® accept or reject e accept

deterministic computation non-deterministic computation



|
A Non-deterministic Turing Machine (M) is a sextuple (K, X, T, A, s, H),
where K, ¥, I, s and H are as in the definition of the Deterministic
Turing Machine, and A describes the transitions and it is a subset of

(K\H)xT) x (KxTU{+,—}))



Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sextuple (K, 3, T, A, s, H),
where K, ¥, I', s and H are as in the definition of the Deterministic
Turing Machine, and A describes the transitions and it is a subset of

(K\H)xT) x (Kx((TU{+,—})

» A is not a function
» a single pair of (g, o) can lead to multiple pairs (¢’, ")
> the empty string € is allowed as a transition symbol



Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sextuple (K, 3, T, A, s, H),
where K, ¥, I', s and H are as in the definition of the Deterministic
Turing Machine, and A describes the transitions and it is a subset of

(K\H)xT) x (Kx((TU{+,—})

» A is not a function
» a single pair of (g, o) can lead to multiple pairs (¢’, ")
> the empty string € is allowed as a transition symbol

» A configuration may yield several configurations in a single step
» s is not necessarily uniquely identified



Let M = (K,%,T,A,s, H) be a Non-deterministic Turing Machine.
We say that M accepts an input w € X* if

(s,Uw) 3y (h, ugv)
forsome h € H, o0 € ¥ and u,v € X*.



Non-deterministic Turing Machine

Definitions
Let M = (K,X,T,A,s, H) be a Non-deterministic Turing Machine.
We say that M accepts an input w € X* if
(s,Uw) F4; (h,ugv)
for some h € H, o0 € ¥ and u,v € ¥*.

We say that M recognizes (or semidecides) a language L if for each
w € X* the following holds: w € L if and only if M accepts w.



Non-deterministic Turing Machine

Definitions
Let M = (K,X,T,A,s, H) be a Non-deterministic Turing Machine.
We say that M accepts an input w € X* if
(s,Uw) F4; (h,ugv)
for some h € H, o0 € ¥ and u,v € ¥*.

We say that M recognizes (or semidecides) a language L if for each
w € X* the following holds: w € L if and only if M accepts w.

We say that M decides a language L if for each w € ¥* the following
two conditions hold:
1. there is natural number N € N (depending on M and |w]|) such that
there is no configuration c satisfying (s, Lw) F4; ¢
2. w e L if and only if (s,Uw) F3, (v, ugv) for some o € ¥ and
u,v € X*



Non-deterministic Turing Machine

Definitions (cont'd)
Let M = (K,X,T,A,s, H) be a Non-deterministic Turing Machine.

We say that M computes a function f : ¥* — X* if for each w € ¥*
the following two conditions hold:
1. there is natural number N € N (depending on M and |w|) such that
there is no configuration c satisfying (s, Lw) -4} ¢

2. (s,Uw) 3, (h,Wo) if and only if v = f(w)



» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m=p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1 : m is a composite number}.



Example

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m =p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p and ¢ non-deterministically
2. multiply p and ¢

3. compare a with p- g and if they are equal then accept



Example

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m =p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p and ¢ non-deterministically
2. multiply p and ¢

3. compare a with p- g and if they are equal then accept

» What does non-deterministically mean?



Example

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m =p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p and ¢ non-deterministically
2. multiply p and ¢

3. compare a with p- g and if they are equal then accept

» What does non-deterministically mean?

» choose (p,q) € {(1,1), (1,11),(1,111),...,(11,1),(11,11),...}



Example

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m =p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p and ¢ non-deterministically
2. multiply p and ¢

3. compare a with p- g and if they are equal then accept

» What does non-deterministically mean?

» choose (p,q) € {(1,1), (1,11),(1,111),...,(11,1),(11,11),...}

» How to transform the above machine to decide the same language?



Example

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p,q € N, i.e., m =p-q.
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p and ¢ non-deterministically
2. multiply p and ¢

3. compare a with p- g and if they are equal then accept

» What does non-deterministically mean?

» choose (p,q) € {(1,1), (1,11),(1,111),...,(11,1),(11,11),...}

» How to transform the above machine to decide the same language?

1. choose two integers p < m and g < m non-deterministically
2. multiply p and ¢

3. compare a with p - ¢ and if they are equal then accept, else reject



» Consider a set A = {ay,as,...,a,} of positive integers and an
integer w € N.
Give a Non-deterministic Turing Machine that recognizes the
language L ={A" C A: >, 4 a;i=w}



» Consider a set A = {ay,as,...,a,} of positive integers and an
integer w € N.
Give a Non-deterministic Turing Machine that recognizes the
language L ={A" C A: >, 4 a;i=w}

1. choose non-deterministically a set A’ C A
2. add the elements of A’

3. if they sum up to w, then accept



Exercise

» Consider a set A = {aq,as,...,a,} of positive integers and an
integer w € N.
Give a Non-deterministic Turing Machine that recognizes the
language L ={A" C A: >, . a;=w}

1. choose non-deterministically a set A’ C A
2. add the elements of A’

3. if they sum up to w, then accept

» How to choose A’ non-deterministically?

» produce all binary numbers of n digits
» start from 00...0 and add 1 at each iteration



Every Non-deterministic Turing Machine NDTM = (K,%,T,A,s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):



Every Non-deterministic Turing Machine NDTM = (K,%,T,A,s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):
» Use a multiple tape deterministic Turing Machine
tape 1: input (never changes)
tape 2: simulation
tape 3: address



Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,X,T', A, s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):

» Use a multiple tape deterministic Turing Machine
tape 1: input (never changes)

tape 2: simulation

tape 3: address

jary

» data on tape 3: 11 12
» each node of the computation
tree of NDT M has at most ¢

children: ¢ < |K| - (|2] +2) 1221 1222
» address of a node in f

{1,2,...,c}" 12211



Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.



Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

» Observations:
» we perform a Breadth First Search of the computation tree



Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations

described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

» Observations:

» we perform a Breadth First Search of the computation tree
» we need exponential time of steps with respect to NDTM!



Discussion

» Non-deterministic Turing Machines seem to be more powerful than
deterministic ones

» we pay this in computation time



Discussion

» Non-deterministic Turing Machines seem to be more powerful than
deterministic ones
» we pay this in computation time

» next lectures: we will see what does this mean



More exercises

» Give a Random Access Turing Machine that decides the language
L ={a"b"c":n > 0}.

» Give a Random Access Turing Machine that decides the language
L ={wecw : w € {a,b}*}.

» Give a Non-deterministic Turing Machine that recognizes the
language L = {a*abb*aa*} (use simple machines).

» Give a Non-deterministic Turing Machine that recognizes the
language L = {wwfuu® : w,u € {a,b}*} (give high-level
definition).

» Consider a graph G = (V, E) and an positive integer k. Give a
Non-deterministic Turing Machine that recognizes the language
L={V'CV:|V'|>kand (u,v) & E for any two u,v € V'}
(give high-level definition).



