
Fundamental Computer Science

Giorgio Lucarelli

giorgio.lucarelli@imag.fr

January 31, 2018

giorgio.lucarelli@imag.fr

Slides & exercises

http://moais.imag.fr/membres/giorgio.lucarelli/FCS

http://moais.imag.fr/membres/giorgio.lucarelli/FCS

Exercise

Σ = {a}, Γ = {a,#,t}, s = q0, H = {h}

q0 q1

q2 h

a :←
t : t
:

a : t
t : t

:

a : a
:→

t :←

(q0,# t ana)

`M (q1,# t an−1aa)
`M (q2,# t an−1ta)
`M (q0,# t an−2a t a)
`M (q1,# t an−3aa t a)
`M (q2,# t an−3ta t a)
`M (q0,# t an−4a t a t a)
`M (q1,# t an−5aa t a t a)
`M (q2,# t an−5ta t a t a)
. . .

(q0, . t aaa) `M (q1, . t aaa)
`M (q2, . t ata)
`M (q0, . t a t a)
`M (q1, .ta t a)
`M (h, .ta t a)

(q0, . t aa) `M (q1, . t aa)
`M (q2, . t ta)
`M (q0, .t t a)
`M (q0, .t t a)
. . .

Exercise

Σ = {a}, Γ = {a,#,t}, s = q0, H = {h}

q0 q1

q2 h

a :←
t : t
:

a : t
t : t

:

a : a
:→

t :←

(q0,# t ana) `M (q1,# t an−1aa)
`M (q2,# t an−1ta)
`M (q0,# t an−2a t a)
`M (q1,# t an−3aa t a)
`M (q2,# t an−3ta t a)
`M (q0,# t an−4a t a t a)
`M (q1,# t an−5aa t a t a)
`M (q2,# t an−5ta t a t a)
. . .

(q0, . t aaa) `M (q1, . t aaa)
`M (q2, . t ata)
`M (q0, . t a t a)
`M (q1, .ta t a)
`M (h, .ta t a)

(q0, . t aa) `M (q1, . t aa)
`M (q2, . t ta)
`M (q0, .t t a)
`M (q0, .t t a)
. . .

Exercise

Σ = {a}, Γ = {a,#,t}, s = q0, H = {h}

q0 q1

q2 h

a :←
t : t
:

a : t
t : t

:

a : a
:→

t :←

(q0,# t ana) `M (q1,# t an−1aa)
`M (q2,# t an−1ta)
`M (q0,# t an−2a t a)
`M (q1,# t an−3aa t a)
`M (q2,# t an−3ta t a)
`M (q0,# t an−4a t a t a)
`M (q1,# t an−5aa t a t a)
`M (q2,# t an−5ta t a t a)
. . .

(q0, . t aaa) `M (q1, . t aaa)
`M (q2, . t ata)
`M (q0, . t a t a)
`M (q1, .ta t a)
`M (h, .ta t a)

(q0, . t aa) `M (q1, . t aa)
`M (q2, . t ta)
`M (q0, .t t a)
`M (q0, .t t a)
. . .

Exercise

Σ = {a}, Γ = {a,#,t}, s = q0, H = {h}

q0 q1

q2 h

a :←
t : t
:

a : t
t : t

:

a : a
:→

t :←

(q0,# t ana) `M (q1,# t an−1aa)
`M (q2,# t an−1ta)
`M (q0,# t an−2a t a)
`M (q1,# t an−3aa t a)
`M (q2,# t an−3ta t a)
`M (q0,# t an−4a t a t a)
`M (q1,# t an−5aa t a t a)
`M (q2,# t an−5ta t a t a)
. . .

(q0, . t aaa) `M (q1, . t aaa)
`M (q2, . t ata)
`M (q0, . t a t a)
`M (q1, .ta t a)
`M (h, .ta t a)

(q0, . t aa) `M (q1, . t aa)
`M (q2, . t ta)
`M (q0, .t t a)
`M (q0, .t t a)
. . .

Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.

Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.

Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.

Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.

Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.

Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w 6∈ L.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w 6∈ L.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w 6∈ L.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w 6∈ L.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ...

t100011000

Computes the function
succ(n) = n+ 1 in binary

More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example

> RtL

0

1

1SL

1

0

t

The output with input
t100010111 is ... t100011000

Computes the function
succ(n) = n+ 1 in binary

Exercise

Prove that the language L = {anbncn : n ≥ 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)

y n

>R dR dR dLt
a b c

d a, d b, d

t
b, c

c,t a,t

Exercise

Prove that the language L = {anbncn : n ≥ 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)

y n

>R dR dR dLt
a b c

d a, d b, d

t
b, c

c,t a,t

Exercise

Prove that the language L = {anbncn : n ≥ 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)

y n

>R dR dR dLt
a b c

d a, d b, d

t
b, c

c,t a,t

More exercises

I Present Turing Machines that decide the following languages over
{a, b}:
(a) ∅
(b) {ε}
(c) {a}
(d) {a}∗

I Give a Turing Machine that recognizes the language a∗ba∗b.

Extensions of the Turing Machine

We have already seen an extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps

Extensions of the Turing Machine

We have already seen an extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps

Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where K,
Σ, Γ, s and H are as in the definition of the ordinary Turing Machine,
and δ is a transition function

from (K \H)× Γk to K × (Γ ∪ {←,→})k

. . . t t a b a b b a t t . . .

. . . t t a a b a b t t . . .

. . . t t 1 1 0 t t . . .

control

q0

q1

q2

q3

q4

Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where K,
Σ, Γ, s and H are as in the definition of the ordinary Turing Machine,
and δ is a transition function

from (K \H)× Γk to K × (Γ ∪ {←,→})k

(from (K \H)× Γk to K × Γk × {←,→}k)

. . . t t a b a b b a t t . . .

. . . t t a a b a b t t . . .

. . . t t 1 1 0 t t . . .

control

q0

q1

q2

q3

q4

Multiple tapes

Theorem

Every k-tape, k > 1, Turing Machine M = (K,Σ,Γ, δ, s,H) has an
equivalent single tape Turing Machine M ′ = (K ′,Σ′,Γ′, δ′, s′, H ′).

If M halts on input w ∈ Σ∗ after t steps, then M ′ halts on input w after
O(t(|w|+ t)) steps.

Sketch of the proof:

I M ′ simulates M in a single tape

I # is used as delimiter to separate the contents of different tapes

I dotted symbols are used to indicate the actual position of the head
of each tape

I for each symbol σ ∈ Γ, add both σ and
•
σ in Γ′

I use the same set of halting states

Multiple tapes

Sketch of the proof:

. . . t t a b t t . . .

. . . t t a a b a t t . . .

. . . t t 1 1 0 t t . . .

M

. . . t # 1
•
1 0 # a a •

b a # •
a b # t . . .

M ′

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w| + t)

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w| + t)

Multiple tapes

Sketch of the proof:

M ′ = “On input w = w1w2 . . . wn:

1. Format the tape to represent the k tapes:

#
•
w1w2 . . . wn#

•
t#

•
t# . . .#

2. For each step that M performs, scan the tape from left to right to
determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M .

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M ′:

1. O(|w|)
2. & 3. O(|w|+ t) per step ⇒ O(t(|w|+ t)) in total

I size of the tape no more than O(|w| + t)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1)

twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2)

twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end

tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: example with k = 2 tapes

> R1,2 σ2 L2
t R

1,2 σ1
σ1 6= t

t1

σ2 6= t

(1) (2)

I extend notation:
I R1,2: move the head of both tapes on the right
I σ2 (as a state): write in the tape 2 the symbol σ
I σ2 (as a label): if the head of tape 2 reads the symbol σ

tape 1 tape 2
initially tw t
after (1) twt twt
after (2) twt twt
at the end tw t wt twt

transforms w to w t w

Multiple tapes: exercise

I Construct a Turing Machine that adds two binary numbers.
Tip: use 2 tapes.

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

I scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

I same arguments as before for the number of steps

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

I scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

I same arguments as before for the number of steps

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (another one):

Multiple heads

Definition (informal)

I at each step all heads can read/write/move

I we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (another one):
. . . t m y t i n p u t t . . .

∧
∧

∧

Multiple heads: example

Give a Machine Turing with two heads that transforms the input tw to
tw t w.

I extend notation:
I σ, σ, σ: the position of the 1st, 2nd and both heads, respectively
I R1,2: move both heads on the right
I σ2 (as a state): write in the position of head 2 the symbol σ
I σ2 (as a label): if the head 2 reads the symbol σ

> R2
tR

1,2 σ2

L1,2
t L2

t

σ1 6= t

t1

Multiple heads: example

Give a Machine Turing with two heads that transforms the input tw to
tw t w.

I extend notation:
I σ, σ, σ: the position of the 1st, 2nd and both heads, respectively
I R1,2: move both heads on the right
I σ2 (as a state): write in the position of head 2 the symbol σ
I σ2 (as a label): if the head 2 reads the symbol σ

> R2
tR

1,2 σ2

L1,2
t L2

t

σ1 6= t

t1

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Two-dimensional tape

Definition (informal)

I move the head left/right/up/down

Why?

I for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M ′.

The simulation by M ′ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

I use a multiple tape Turing Machine

I each tape corresponds to one line of the two-dimensional memory

Discussion

I we can even combine the presented extensions and still not get a
stronger model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model

Discussion

I we can even combine the presented extensions and still not get a
stronger model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model

Exercises

I Give an example of a Turing machine with one halting state that
does not compute a function from strings to strings.

I Give an example of a Turing machine with two halting states, y and
n, that does not decide a language.

I Can you give an example of a Turing machine with one halting state
that does not recognize a language?

I Give a Turing Machine which takes as input an integer written in
unary and computes the binary representation of the same integer
(for example < 11111111111 >1 becomes < 1011 >2).

A small exam...

I Construct a Turing Machine that multiplies two binary numbers.
Tip: use 3 tapes and the machine that performs the addition of two
binary numbers as a subroutine.

Instructions

I groups of at most 4 (and at least 3)

I 1 answer per group

I 1 author clearly defined per group

I do not forget to give the names of all members of the group

I you have 30 minutes

