Fundamental Computer Science

Giorgio Lucarelli

giorgio.lucarelli@imag.fr

January 31, 2018

http://moais.imag.fr/membres/giorgio.lucarelli/FCS

$$\Sigma = \{a\}, \quad \Gamma = \{a, \#, \sqcup\}, \quad s = q_0, \quad H = \{h\}$$

$$\Sigma = \{a\}, \quad \Gamma = \{a, \#, \sqcup\}, \quad s = q_0, \quad H = \{h\}$$

$$\Sigma = \{a\}, \quad \Gamma = \{a, \#, \sqcup\}, \quad s = q_0, \quad H = \{h\}$$

$$\overset{n}{\underline{a}}) \qquad \overset{}{\vdash}_{M} (q_{1}, \# \sqcup a^{n-1}\underline{a}a) \\ \overset{}{\vdash}_{M} (q_{2}, \# \sqcup a^{n-1}\underline{\sqcup}a) \\ \overset{}{\vdash}_{M} (q_{0}, \# \sqcup a^{n-2}\underline{a} \sqcup a) \\ \overset{}{\vdash}_{M} (q_{1}, \# \sqcup a^{n-3}\underline{a}a \sqcup a) \\ \overset{}{\vdash}_{M} (q_{2}, \# \sqcup a^{n-3}\underline{\sqcup}a \sqcup a) \\ \overset{}{\vdash}_{M} (q_{2}, \# \sqcup a^{n-4}\underline{a} \sqcup a \sqcup a) \\ \overset{}{\vdash}_{M} (q_{1}, \# \sqcup a^{n-5}\underline{a}a \sqcup a \sqcup a) \\ \overset{}{\vdash}_{M} (q_{2}, \# \sqcup a^{n-5}\underline{\sqcup}a \sqcup a \sqcup a)$$

$$\begin{array}{ll} (q_0, \triangleright \sqcup a\underline{a\underline{a}}) & \vdash_M (q_1, \triangleright \sqcup \underline{a\underline{a}}a) \\ \vdash_M (q_2, \triangleright \sqcup \underline{a} \sqcup \underline{a}) \\ \vdash_M (q_0, \triangleright \sqcup \underline{a} \sqcup a) \\ \vdash_M (q_1, \triangleright \sqcup \underline{a} \sqcup a) \\ \vdash_M (h, \triangleright \sqcup \underline{a} \sqcup a) \end{array}$$

$$\Sigma = \{a\}, \quad \Gamma = \{a, \#, \sqcup\}, \quad s = q_0, \quad H = \{h\}$$

$$\begin{array}{ll} a^{n}\underline{a} \end{pmatrix} & \vdash_{M} (q_{1}, \# \sqcup a^{n-1}\underline{a}a) \\ \vdash_{M} (q_{2}, \# \sqcup a^{n-1}\underline{\sqcup}a) \\ \vdash_{M} (q_{0}, \# \sqcup a^{n-2}\underline{a} \sqcup a) \\ \vdash_{M} (q_{1}, \# \sqcup a^{n-3}\underline{a}a \sqcup a) \\ \vdash_{M} (q_{2}, \# \sqcup a^{n-3}\underline{\sqcup}a \sqcup a) \\ \vdash_{M} (q_{0}, \# \sqcup a^{n-4}\underline{a} \sqcup a \sqcup a) \\ \vdash_{M} (q_{1}, \# \sqcup a^{n-5}\underline{a}a \sqcup a \sqcup a) \\ \vdash_{M} (q_{2}, \# \sqcup a^{n-5}\underline{\sqcup}a \sqcup a \sqcup a) \\ \\ \end{pmatrix} \end{array}$$

$$\begin{array}{cccc} (q_0, \triangleright \sqcup aa\underline{a}) & \vdash_M (q_1, \triangleright \sqcup \underline{a}\underline{a}a) & (q_0, \triangleright \sqcup a\underline{a}) & \vdash_M (q_1, \triangleright \sqcup \underline{a}a) \\ & \vdash_M (q_2, \triangleright \sqcup \underline{a}\underline{\sqcup}a) & & \vdash_M (q_2, \triangleright \sqcup \underline{\sqcup}a) \\ & \vdash_M (q_0, \triangleright \sqcup \underline{a} \sqcup a) & & \vdash_M (q_0, \triangleright \underline{\sqcup} \sqcup a) \\ & \vdash_M (q_1, \triangleright \underline{\sqcup}a \sqcup a) & & \vdash_M (q_0, \triangleright \underline{\sqcup} \sqcup a) \\ & \vdash_M (h, \triangleright \underline{\sqcup}a \sqcup a) & & \dots \end{array}$$

Definitions

Consider a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ such that $H = \{y, n\}$.

Any halting configuration whose state component is y (for "yes") is called an **accepting configuration**, while a halting configuration whose state component is n (for "no") is called a **rejecting configuration**.

Consider a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ such that $H = \{y, n\}$.

Any halting configuration whose state component is y (for "yes") is called an **accepting configuration**, while a halting configuration whose state component is n (for "no") is called a **rejecting configuration**.

We say that M accepts a string $w \in \Sigma^*$ if starting from an initial configuration yields an accepting configuration. We say that M rejects a string $w \in \Sigma^*$ if starting from an initial configuration yields an rejecting configuration. Consider a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ such that $H = \{y, n\}$.

Any halting configuration whose state component is y (for "yes") is called an **accepting configuration**, while a halting configuration whose state component is n (for "no") is called a **rejecting configuration**.

We say that M accepts a string $w \in \Sigma^*$ if starting from an initial configuration yields an accepting configuration. We say that M rejects a string $w \in \Sigma^*$ if starting from an initial configuration yields an rejecting configuration.

We say that M decides a language $L \subseteq \Sigma^*$ if for any string $w \in \Sigma^*$: if $w \in L$ then M accepts w; and if $w \notin L$ then M rejects w.

Consider a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ such that $H = \{y, n\}$.

Any halting configuration whose state component is y (for "yes") is called an **accepting configuration**, while a halting configuration whose state component is n (for "no") is called a **rejecting configuration**.

We say that M accepts a string $w \in \Sigma^*$ if starting from an initial configuration yields an accepting configuration. We say that M rejects a string $w \in \Sigma^*$ if starting from an initial configuration yields an rejecting configuration.

We say that M decides a language $L \subseteq \Sigma^*$ if for any string $w \in \Sigma^*$: if $w \in L$ then M accepts w; and if $w \notin L$ then M rejects w.

We say that M recognizes (or semidecides) a language $L \subseteq \Sigma^*$ if for any string $w \in \Sigma^*$: $w \in L$ if and only if M accepts w.

A language L is called **decidable** (or **Turing-decidable** or **recursive**) if there is a Turing Machine that decides it.

A language L is called **decidable** (or **Turing-decidable** or **recursive**) if there is a Turing Machine that decides it.

A language L is called **Turing-recognizable** (or **recursively enumerable**) if there is a Turing Machine that recognizes it.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not halt on input w if $w \notin L$.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not halt on input w if $w \notin L$.

Theorem

If a language L is decidable, then its complement \overline{L} is also.

Proof.

Theorem

If a language L is decidable, then it is Turing-recognizable.

Proof.

Transform the Turing Machine M that decides L such that M does not halt on input w if $w \notin L$.

Theorem

If a language L is decidable, then its complement \overline{L} is also.

Proof.

$$\delta'(q,a) = \left\{ \begin{array}{ll} n & \text{if } \delta(q,a) = y \\ y & \text{if } \delta(q,a) = n \\ \delta(q,a) & \text{otherwise} \end{array} \right.$$

$$(s, {\underline{\sqcup}} w) \vdash^*_M (h, {\underline{\sqcup}} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

Example

The output with input $\sqcup 100010111$ is ...

$$(s, \underline{\sqcup} w) \vdash^*_M (h, \underline{\sqcup} y)$$

Then, y is the **output** of M on input w and is denoted by M(w).

Consider a function $f: \Sigma^* \to \Sigma^*$. We say that M computes the function f if M(w) = f(w) for all $w \in \Sigma^*$.

A function f is called **decidable** (or **recursive**) if there is a Turing Machine that computes it.

Example

The output with input $\Box 100010111$ is ... $\Box 100011000$

Computes the function succ(n) = n + 1 in binary

Prove that the language $L = \{a^n b^n c^n : n \ge 0\}$ is decidable.

Prove that the language $L=\{a^nb^nc^n:n\geq 0\}$ is decidable.

Solution: We just need to give a Turing Machine that decides it. (give a Turing Machine composed by simple Turing Machines as described in the previous lecture)

Prove that the language $L = \{a^n b^n c^n : n \ge 0\}$ is decidable.

Solution: We just need to give a Turing Machine that decides it. (give a Turing Machine composed by simple Turing Machines as described in the previous lecture)

- ▶ Present Turing Machines that decide the following languages over {a, b}:
 (a) Ø
 (b) {€}
 (c) {a}
 (d) {a}*
- Give a Turing Machine that *recognizes* the language a^*ba^*b .

We have already seen an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}

We have already seen an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}
- ▶ if the extended Turing Machine halts on input w after t steps, then the initial Turing Machine halts on input w after at most 2t steps

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

 $\text{from} \quad (K \setminus H) \times \Gamma^k \quad \text{ to } \quad K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

from $(K \setminus H) \times \Gamma^k$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$ (from $(K \setminus H) \times \Gamma^k$ to $K \times \Gamma^k \times \{\leftarrow, \rightarrow\}^k$)

Theorem

Every k-tape, k > 1, Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ has an equivalent single tape Turing Machine $M' = (K', \Sigma', \Gamma', \delta', s', H')$.

If M halts on input $w\in \Sigma^*$ after t steps, then M' halts on input w after O(t(|w|+t)) steps.

Sketch of the proof:

- M' simulates M in a single tape
- \blacktriangleright # is used as delimiter to separate the contents of different tapes
- dotted symbols are used to indicate the actual position of the head of each tape
 - for each symbol $\sigma \in \Gamma$, add both σ and $\overset{\bullet}{\sigma}$ in Γ'
- use the same set of halting states

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

Number of steps for M':

1. O(|w|)

2. & 3. O(|w|+t) per step $\Rightarrow O(t(|w|+t))$ in total

• size of the tape no more than O(|w|+t)

The multiple tape Turing Machine is **not** more powerful !!

The multiple tape Turing Machine is **not** more powerful !!

... but it is more easy to construct and to understand !

The multiple tape Turing Machine is **not** more powerful !!

 \ldots but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way (a function can use one or more not used tapes)

- $R^{1,2}$: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
after (2)		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$
after (2)	$\sqcup w \sqcup$	$\underline{\sqcup}w \sqcup$
at the end		

- ► R^{1,2}: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
after (2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$

extend notation:

- $R^{1,2}$: move the head of both tapes on the right
- σ^2 (as a state): write in the tape 2 the symbol σ
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$
after (2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \underline{\sqcup}$	$\sqcup w \underline{\sqcup}$

transforms w to $w \sqcup w$

Multiple tapes: exercise

 Construct a Turing Machine that adds two binary numbers. Tip: use 2 tapes.

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

$$> R^2_{\sqcup} R^{1,2} \xrightarrow{\sigma^1 \neq \sqcup} \sigma^2$$

$$\downarrow \sqcup^1$$

$$L^{1,2}_{\sqcup} L^2_{\sqcup}$$

Definition (informal)

move the head left/right/up/down

Definition (informal)

move the head left/right/up/down

Why?

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

- use a multiple tape Turing Machine
- ▶ each tape corresponds to one line of the two-dimensional memory

Discussion

we can even combine the presented extensions and still not get a stronger model

Discussion

- we can even combine the presented extensions and still not get a stronger model
- Observation: a computation in the prototype Turing Machine needs a number of steps which is bounded by a polynomial of the size of the input and of the number steps in any of the extended model

- Give an example of a Turing machine with one halting state that does not *compute* a function from strings to strings.
- ► Give an example of a Turing machine with two halting states, *y* and *n*, that does not *decide* a language.
- Can you give an example of a Turing machine with one halting state that does not *recognize* a language?
- ► Give a Turing Machine which takes as input an integer written in unary and *computes* the binary representation of the same integer (for example < 11111111111 >₁ becomes < 1011 >₂).

A small exam...

 Construct a Turing Machine that multiplies two binary numbers. Tip: use 3 tapes and the machine that performs the addition of two binary numbers as a subroutine.

Instructions

- groups of at most 4 (and at least 3)
- ▶ 1 answer per group
- ▶ 1 author clearly defined per group
- do not forget to give the names of all members of the group
- ▶ you have 30 minutes