Giorgio Lucarelli

giorgio.lucarelli@imag.fr

January 31, 2018

giorgio.lucarelli@imag.fr

http://moais.imag.fr/membres/giorgio.lucarelli/FCS

http://moais.imag.fr/membres/giorgio.lucarelli/FCS

Y= {a’}' I'= {aa #, Ll}, s=q, H= {h’}

(qoa # u ang)

Y= {a‘}' I'= {aa #, |_|}, s=q, H= {h}

(g0, # Ua™a) I—M (qn, #Ua™" 1aa)

M (g2, # Ua™ 'Ua)

M (o, #Ua" *alla)
M (q, # U a"3aal a)
M (g2, #Ua"*Uala)
w (go, #Ua™ *allala)
(
(

I—M q,#Ua"PaaUala)
@ e i Far (g2, #Ua" PUaUala)

Y= {a‘}' I'= {aa #, |_|}, s=q, H= {h}

(g0, # Ua"a) "M (q1 #Ua"" 1aa)

qo #Lla"_4aIJaIJa)

|—M q,#Ua"PaaUala)
oy
a

M (g2
M (qo
M (
Eq #l_la" 3Qa,l_la,)
(
|‘M(q2,#l_la" SUa U ala)

M (q1,> U aaa)
M (g2,> U alda)
Far (go,>UalUa)
M (g1,>Ua U a)
M (h,>Ua U a)

(0,> U aaa)

P

Y= {a‘}' I'= {aa #, |_|}, s=q, H= {h}

(qo, # Ua"a) |—M q, #I_Ia" Laa)

qo, #Ua"*alUala)
q,#Ua"PaaUala)

(

v (g2

v (o

M (

M (g2, #l_la" 3ga,l_la,)
E

@ e i I—M(qg,#l_la" SUa U ala)

(go,> U aaa) M (q1,> U aaa) (go,>Uaa) tFar (q1,>Uaa)
M (g2,> U alda) Fa (g2,> U Ua)
Far (qo,l>l_|gl_|a) v (qo,DQIJa)

(

(

M (q1,5Ua U a) Far (go,>U U a)
M (h,>Ua U a)

Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.

Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.

We say that M accepts a string w € X* if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w € X* if starting from an initial
configuration yields an rejecting configuration.

Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.

We say that M accepts a string w € X* if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w € X* if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L C X* if for any string w € X*: if
w € L then M accepts w; and if w & L then M rejects w.

Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.

We say that M accepts a string w € X* if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w € X* if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L C X* if for any string w € X*: if
w € L then M accepts w; and if w & L then M rejects w.

We say that M recognizes (or semidecides) a language L C ¥* if for
any string w € ¥*: w € L if and only if M accepts w.

|
A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

|
A language L is called decidable (or Turing-decidable or recursive) if

there is a Turing Machine that decides it.

|
A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.

If a language L is decidable, then it is Turing-recognizable.

If a language L is decidable, then it is Turing-recognizable.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w & L. |

If a language L is decidable, then it is Turing-recognizable.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w & L. |

If a language L is decidable, then its complement L is also.

If a language L is decidable, then it is Turing-recognizable.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w & L. |

If a language L is decidable, then its complement L is also.

n if 6(g,a) =y
(g, a) = g if 6(q,a) =n

(g,a) otherwise

|
Consider a Turing Machine M = (K, X, T,4,s,{h}) and a string w € 3*.
Suppose that M halts on input w and for some y € ¥* we have

(5, L) s (b, Ly)
Then, y is the output of M on input w and is denoted by M (w).

More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) =3 (B, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) =3 (B, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) 34 (h, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example L
P The output with input

//_\ 0 11100010111 s ...
0

1

\
18

> R, L

L

More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) =3 (B, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example L
P The output with input

//_\ 0 11100010111 s ... 1100011000
0

1

\ Computes the function
1S suce(n) =n+ 1 in binary

L

> R, L

Prove that the language L = {a™b"c¢™ : n > 0} is decidable.

Prove that the language L = {a™b"c¢™ : n > 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)

Prove that the language L = {a™b"c¢™ : n > 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)

ld Qad de ‘

P A

» Present Turing Machines that decide the following languages over
{a,b}:
(a) 0
(b) {e}
(c) {a}
(d) {a}*

» Give a Turing Machine that recognizes the language a*ba*b.

We have already seen an extension:
» write in the tape and move left or right at the same time
» modify the definition of the transition function
initial: from (K \ H) xT'to K x (T'U {«+-,—})
extended: from (K'\ H) xT"to K x I' x {«, =}

Extensions of the Turing Machine

We have already seen an extension:

» write in the tape and move left or right at the same time
» modify the definition of the transition function
initial: from (K \ H) xT'to K x (T'U {«+-,—})
extended: from (K \ H) xT'to K x ' x {«+,—}

> if the extended Turing Machine halts on input w after ¢ steps, then
the initial Turing Machine halts on input w after at most 2t steps

|
A k-tape Turing Machine (M) is a sextuple (K, X, T, 4, s, H), where K,
3, T, s and H are as in the definition of the ordinary Turing Machine,
and 4 is a transition function

from (K\H)xI* to K x(TU{«,—=}F

1
w] Je[u[i]afoJufu]-
— g1 T
T Jufufefafefafp]u]u]-
control

1
ToleTe e e[+ oo o]0l

Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K, X, T, 6, s, H), where K,
3, T, s and H are as in the definition of the ordinary Turing Machine,
and ¢ is a transition function

from (K\H)xI* to K x(TU{«,—=}F

(from (K\H)xTI* to K xTkx{«,—}"

q0 L

“) o ufufe [fo]u]y]

q3 —] .
@ [u[ufafalo]afe]u]u]
control L

Multiple tapes

Theorem

Every k-tape, k > 1, Turing Machine M = (K,%,T',0,s, H) has an
equivalent single tape Turing Machine M’ = (K', %' 1,8, s', H').

If M halts on input w € X* after t steps, then M’ halts on input w after
O(t(Jw| + t)) steps.

Sketch of the proof:

» M’ simulates M in a single tape

v

is used as delimiter to separate the contents of different tapes

v

dotted symbols are used to indicate the actual position of the head
of each tape

» for each symbol ¢ € T, add both & and & in I”

v

use the same set of halting states

Sketch of the proof:

1
BOEDNDEnE

M E l
olele[e o Te ool
oleTe[oe[o]-

M .
BONOBRDEOOE

°
a

a|#

T#[al-

Multiple tapes

Sketch of the proof:

M’ = “On input w = wiws . .. Wy,:
1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.

Multiple tapes

Sketch of the proof:

M’ = “On input w = wiws . .. Wy,:
1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Multiple tapes

Sketch of the proof:

M’ = “On input w = wiws . .. Wy,:
1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M’:

L O(Jwl)
2. & 3. O(Jw| +t) per step = O(t(Jw| + ¢)) in total
> size of the tape no more than O(|w| + t)

The multiple tape Turing Machine is not more powerful !!

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

. and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

[ol #Uu I 0% £ U

o2 LE' R1:2 1

o

» extend notation:

» R'2: move the head of both tapes on the right
» o2 (as a state): write in the tape 2 the symbol
» o2 (as a label): if the head of tape 2 reads the symbol &

I 027é|_|

I

I

| 2 pl2
o? : L RY

I

1 1
\u_/u)/

» extend notation:
» RYZ: move the head of both tapes on the right
» o2 (as a state): write in the tape 2 the symbol o
» o2 (as a label): if the head of tape 2 reads the symbol &

ol

| tape 1 tape 2
initially Uw u
after (1)

» extend notation:
» RYZ: move the head of both tapes on the right
» o2 (as a state): write in the tape 2 the symbol o
» o2 (as a label): if the head of tape 2 reads the symbol &

| tape 1 tape 2
initially Uw u
after (1) Lwl Uwl

after (2)

Multiple tapes: example with £ = 2 tapes

| ol #£U

I
I
I I
2 1,2
0.2 : Lu:R7 0'1
I I

» extend notation:

» RYZ?: move the head of both tapes on the right

» o2 (as a state): write in the tape 2 the symbol &

» o2 (as a label): if the head of tape 2 reads the symbol o

| tape 1 tape 2
initially Lw H]
after (1) Uwl Uwl
after (2) Uwl Lwl

at the end

Multiple tapes: example with £ = 2 tapes

| ol #£U

I
I
I I
2 1,2
0.2 : Lu:R7 0'1
I I

» extend notation:

» RYZ?: move the head of both tapes on the right

» o2 (as a state): write in the tape 2 the symbol &

» o2 (as a label): if the head of tape 2 reads the symbol o

| tape 1 tape 2
initially Uw u
after (1) Uwl Uwl
after (2) Lwl Uwl

at the end | Liw U wl Uwl

Multiple tapes: example with £ = 2 tapes

| ol #£U

I
I
I I
2 1,2
0.2 : Lu:R7 0'1
I I

» extend notation:

» RYZ?: move the head of both tapes on the right

» o2 (as a state): write in the tape 2 the symbol &

» o2 (as a label): if the head of tape 2 reads the symbol o

| tape 1 tape 2
initially Uw u
after (1) | UwU Uwl transforms w to w Ll w
after (2) Lwl LwU

at the end | Liw U wl Uwl

» Construct a Turing Machine that adds two binary numbers.
Tip: use 2 tapes.

Definition (informal)
» at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):

Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):
» scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

» same arguments as before for the number of steps

Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):
» scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

» same arguments as before for the number of steps

Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps

t that M performs.

Proof (another one):

Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps

t that M performs.

Proof (another one):

Give a Machine Turing with two heads that transforms the input Dw to
Dw U w.

» extend notation:
> o, 7, g: the position of the 1st, 2nd and both heads, respectively
» RY2: move both heads on the right
» o2 (as a state): write in the position of head 2 the symbol o
» o2 (as a label): if the head 2 reads the symbol &

Multiple heads: example

Give a Machine Turing with two heads that transforms the input Lw to
Uw U w.

» extend notation:
» o, 7, 0. the position of the 1st, 2nd and both heads, respectively

?%1’2 move both heads on the right
(as a state): write in the position of head 2 the symbol o

o2 (as a label): if the head 2 reads the symbol &

vvYyy

Definition (informal)
» move the head left/right/up/down

Definition (informal)
» move the head left/right/up/down

Why?

Definition (informal)
» move the head left/right/up/down

Why?

» for example, to represent more easily two-dimensional matrices

Two-dimensional tape

Definition (informal)
» move the head left/right/up/down

Why?

» for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):

Two-dimensional tape

Definition (informal)
» move the head left/right/up/down
Why?

» for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):
» use a multiple tape Turing Machine

» each tape corresponds to one line of the two-dimensional memory

» we can even combine the presented extensions and still not get a
stronger model

» we can even combine the presented extensions and still not get a
stronger model

» Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model

Exercises

» Give an example of a Turing machine with one halting state that
does not compute a function from strings to strings.

» Give an example of a Turing machine with two halting states, y and
n, that does not decide a language.

» Can you give an example of a Turing machine with one halting state
that does not recognize a language?

» Give a Turing Machine which takes as input an integer written in
unary and computes the binary representation of the same integer
(for example < 11111111111 >; becomes < 1011 >3).

A small exam...

» Construct a Turing Machine that multiplies two binary numbers.
Tip: use 3 tapes and the machine that performs the addition of two
binary numbers as a subroutine.

Instructions

v

groups of at most 4 (and at least 3)

1 answer per group

1 author clearly defined per group

do not forget to give the names of all members of the group
you have 30 minutes

