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Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.
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Definitions

Consider a Turing Machine M = (K, X, T, 4, s, H) such that H = {y,n}.

Any halting configuration whose state component is y (for “yes") is
called an accepting configuration, while a halting configuration whose
state component is n (for “no") is called a rejecting configuration.

We say that M accepts a string w € X* if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w € X* if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L C X* if for any string w € X*: if
w € L then M accepts w; and if w & L then M rejects w.

We say that M recognizes (or semidecides) a language L C ¥* if for
any string w € ¥*: w € L if and only if M accepts w.



|
A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.



|
A language L is called decidable (or Turing-decidable or recursive) if

there is a Turing Machine that decides it.

|
A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.
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If a language L is decidable, then it is Turing-recognizable.

Transform the Turing Machine M that decides L such that M does not
halt on input w if w & L. |

If a language L is decidable, then its complement L is also.

n if 6(g,a) =y
(g, a) = g if 6(q,a) =n

(g,a) otherwise
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Consider a Turing Machine M = (K, X, T,4,s,{h}) and a string w € 3*.
Suppose that M halts on input w and for some y € ¥* we have

(5, L) s (b, Ly)
Then, y is the output of M on input w and is denoted by M (w).
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More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) 34 (h, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.
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More definitions

Consider a Turing Machine M = (K,X,T',d,s,{h}) and a string w € ¥*.
Suppose that M halts on input w and for some y € ¥* we have

(s, Lw) =3 (B, Ly)
Then, y is the output of M on input w and is denoted by M (w).

Consider a function f : ¥* — X*. We say that M computes the
function f if M(w) = f(w) for all w € ¥*.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.

Example L
P The output with input

//_\ 0 11100010111 s ... 1100011000
0

1

\ Computes the function
1S suce(n) =n+ 1 in binary

L

> R, L
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Prove that the language L = {a™b"c¢™ : n > 0} is decidable.

Solution: We just need to give a Turing Machine that decides it.
(give a Turing Machine composed by simple Turing Machines as
described in the previous lecture)
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» Present Turing Machines that decide the following languages over
{a,b}:
(a) 0
(b) {e}
(c) {a}
(d) {a}*

» Give a Turing Machine that recognizes the language a*ba*b.
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» write in the tape and move left or right at the same time
» modify the definition of the transition function
initial: from (K \ H) xT'to K x (T'U {«+-,—})
extended: from (K'\ H) xT"to K x I' x {«, =}



Extensions of the Turing Machine

We have already seen an extension:

» write in the tape and move left or right at the same time
» modify the definition of the transition function
initial: from (K \ H) xT'to K x (T'U {«+-,—})
extended: from (K \ H) xT'to K x ' x {«+,—}

> if the extended Turing Machine halts on input w after ¢ steps, then
the initial Turing Machine halts on input w after at most 2t steps



|
A k-tape Turing Machine (M) is a sextuple (K, X, T, 4, s, H), where K,
3, T, s and H are as in the definition of the ordinary Turing Machine,
and 4 is a transition function
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Multiple tapes

A k-tape Turing Machine (M) is a sextuple (K, X, T, 6, s, H), where K,
3, T, s and H are as in the definition of the ordinary Turing Machine,
and ¢ is a transition function

from (K\H)xI* to K x(TU{«,—=}F

(from (K\H)xTI* to K xTkx{«,—}"
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Multiple tapes

Theorem

Every k-tape, k > 1, Turing Machine M = (K,%,T',0,s, H) has an
equivalent single tape Turing Machine M’ = (K', %' 1,8, s', H').

If M halts on input w € X* after t steps, then M’ halts on input w after
O(t(Jw| + t)) steps.

Sketch of the proof:

» M’ simulates M in a single tape

v

# is used as delimiter to separate the contents of different tapes

v

dotted symbols are used to indicate the actual position of the head
of each tape

» for each symbol ¢ € T, add both & and & in I”

v

use the same set of halting states



Sketch of the proof:
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Multiple tapes

Sketch of the proof:

M’ = “On input w = wiws . .. Wy,:
1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.
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1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”



Multiple tapes

Sketch of the proof:

M’ = “On input w = wiws . .. Wy,:
1. Format the tape to represent the k tapes:
T S TN JOTIy o T S
2. For each step that M performs, scan the tape from left to right to

determine the symbols under the virtual heads. Then, do a second
scan to update the tapes according to the transition function of M.

3. If at any point there is a need to move a virtual head outside the
area marked for the corresponding tape, then shift right the contents
of all tapes succeeding.”

Number of steps for M’:

L O(Jwl)
2. & 3. O(Jw| +t) per step = O(t(Jw| + ¢)) in total
> size of the tape no more than O(|w| + t)
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... but it is more easy to construct and to understand !



The multiple tape Turing Machine is not more powerful !!

... but it is more easy to construct and to understand !

. and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)
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» extend notation:
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» o2 (as a label): if the head of tape 2 reads the symbol &
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» extend notation:
» RYZ: move the head of both tapes on the right
» o2 (as a state): write in the tape 2 the symbol o
» o2 (as a label): if the head of tape 2 reads the symbol &

ol

| tape 1 tape 2
initially Uw u
after (1)




» extend notation:
» RYZ: move the head of both tapes on the right
» o2 (as a state): write in the tape 2 the symbol o
» o2 (as a label): if the head of tape 2 reads the symbol &

| tape 1 tape 2
initially Uw u
after (1) Lwl Uwl

after (2)



Multiple tapes: example with £ = 2 tapes
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Multiple tapes: example with £ = 2 tapes

| ol #£U

I
I
I I
2 1,2
0.2 : Lu:R7 0'1
I I

» extend notation:

» RYZ?: move the head of both tapes on the right

» o2 (as a state): write in the tape 2 the symbol &

» o2 (as a label): if the head of tape 2 reads the symbol o

| tape 1 tape 2
initially Uw u
after (1) | UwU Uwl transforms w to w Ll w
after (2) Lwl LwU

at the end | Liw U wl  Uwl



» Construct a Turing Machine that adds two binary numbers.
Tip: use 2 tapes.
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» we need a convention if two heads try writing in the same place
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Every multiple head Turing Machine M has an equivalent single head
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The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps
t that M performs.

Proof (sketch):
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Multiple heads

Definition (informal)
> at each step all heads can read/write/move

» we need a convention if two heads try writing in the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head
Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time quadratic to the size of the input |w| and the number of steps

t that M performs.

Proof (another one):




Give a Machine Turing with two heads that transforms the input Dw to
Dw U w.

» extend notation:
> o, 7, g: the position of the 1st, 2nd and both heads, respectively
» RY2: move both heads on the right
» o2 (as a state): write in the position of head 2 the symbol o
» o2 (as a label): if the head 2 reads the symbol &



Multiple heads: example

Give a Machine Turing with two heads that transforms the input Lw to
Uw U w.

» extend notation:
» o, 7, 0. the position of the 1st, 2nd and both heads, respectively

?%1’2 move both heads on the right
(as a state): write in the position of head 2 the symbol o

o2 (as a label): if the head 2 reads the symbol &

vvYyy
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Definition (informal)
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Why?

» for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):



Two-dimensional tape

Definition (informal)
» move the head left/right/up/down
Why?

» for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent
single-dimensional tape Turing Machine M'.

The simulation by M’ of M on an input w which leads to a halting state
takes time polynomial to the size of the input |w| and the number of
steps t that M performs.

Proof (sketch):
» use a multiple tape Turing Machine

» each tape corresponds to one line of the two-dimensional memory



» we can even combine the presented extensions and still not get a
stronger model



» we can even combine the presented extensions and still not get a
stronger model

» Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number steps in any of the extended model



Exercises

» Give an example of a Turing machine with one halting state that
does not compute a function from strings to strings.

» Give an example of a Turing machine with two halting states, y and
n, that does not decide a language.

» Can you give an example of a Turing machine with one halting state
that does not recognize a language?

» Give a Turing Machine which takes as input an integer written in
unary and computes the binary representation of the same integer
(for example < 11111111111 >; becomes < 1011 >3).



A small exam...

» Construct a Turing Machine that multiplies two binary numbers.
Tip: use 3 tapes and the machine that performs the addition of two
binary numbers as a subroutine.

Instructions

v

groups of at most 4 (and at least 3)

1 answer per group

1 author clearly defined per group

do not forget to give the names of all members of the group
you have 30 minutes



