Fundamental Computer Science

Giorgio Lucarelli (revisited by Denis Trystram)

2019

Organization

Classes

- 30 hours in total
- ► Theory: 50%
- Exercises: 50%

Evaluation

- ► Exams: 70%
- ► Tests during Exercises sessions: 30%

References

- 1. Harry R. Lewis and Christos H. Papadimitriou, *Elements of the Theory of Computation*, Prentice-Hall
- 2. Christos H. Papadimitriou, Computational Complexity, Pearson
- 3. S. Arora and B. Barak, *Computational complexity a modern approach*, Cambridge
- 4. Vijay V. Vazirani, Approximation Algorithms, Springer

What is an Algorithm ?

Informally: a procedure composed by a set of steps that solves a problem

Desired properties

What is an Algorithm ?

Informally: a procedure composed by a set of steps that solves a problem

Desired properties

- clearly defined steps (formalization)
- efficiency (complexity how many steps?)
- ▶ termination

History

• Etymology:

- ► Al-Khwārizmī a Persian mathematician of the 9th century
- $\alpha \rho \iota \theta \mu \delta \varsigma$ the Greek word that means "number"
- Euclid's algorithm for computing the greatest common divisor (3rd century BC)
- ► End of 19th century beginning of 20th century: mathematical formalizations (proof systems, axioms, etc). Is there an algorithm for any problem?
- ► Entscheidungsproblem (a challenge proposed by David Hilbert 1928): create an algorithm which is able to decide if a mathematical statement is true in a finite number of operations
- Church-Turing thesis (1930's): provides a formal definition of an algorithm (λ-calculus, Turing machine) and show that a solution to Entscheidungsproblem does not exist

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

language: a set strings over an alphabet Σ (i.e., a subset of Σ^*)

- examples: \emptyset , Σ , Σ^*
- more examples:

$$\begin{split} L &= \{w \in \Sigma^* : w \text{ has some property } P\} \\ L &= \{w \in \Sigma^* : w = w^R\} \quad (w^R = \text{reverse of } w) \\ L &= \{w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's} \end{split}$$

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

language: a set strings over an alphabet Σ (i.e., a subset of Σ^*)

- examples: \emptyset , Σ , Σ^*
- more examples:

$$\begin{split} &L = \{w \in \Sigma^* : w \text{ has some property } P\} \\ &L = \{w \in \Sigma^* : w = w^R\} \quad (w^R = \text{reverse of } w) \\ &L = \{w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's}\} \\ &L = \{w \in \{1, 2, \dots, n\} : w \text{ is a permutation of } \{1, 2, \dots, n\} \\ & \text{ corresponding to a Hamiltonian Path}\} \end{split}$$

Decision problem: a problem that can be posed as an yes/no question

• example: Given a number *n*, is *n* prime?

- example: Given a number *n*, is *n* prime?
- other examples???

- example: Given a number *n*, is *n* prime?
- ► other examples:
 - Given a set of numbers $A = \{a_1, a_2, \ldots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \ldots < a_{\pi(n)}$)

- example: Given a number *n*, is *n* prime?
- ▶ other examples:
 - Given a set of numbers $A = \{a_1, a_2, \ldots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \ldots < a_{\pi(n)}$)
 - Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \le i \le |V-1|$?

- example: Given a number *n*, is *n* prime?
- ▶ other examples:
 - Given a set of numbers $A = \{a_1, a_2, \ldots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \ldots < a_{\pi(n)}$)
 - Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \leq i \leq |V-1|$? (Hamiltonian Path)

Decision problem: a problem that can be posed as an yes/no question

- example: Given a number *n*, is *n* prime?
- other examples:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \dots < a_{\pi(n)}$)
 - Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \leq i \leq |V 1|$? (Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

Decision problem: a problem that can be posed as an yes/no question

- example: Given a number *n*, is *n* prime?
- ▶ other examples:
 - Given a set of numbers $A = \{a_1, a_2, \ldots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \ldots < a_{\pi(n)}$)
 - Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \leq i \leq |V-1|$? (Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

▶ example: Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$, find the path p between s and t such that the sum of distances of the edges in p is minimized.

Decision problem: a problem that can be posed as an yes/no question

- example: Given a number *n*, is *n* prime?
- other examples:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$, does the permutation π correspond to an increasing ordering of the numbers in A? (i.e., is it true that $a_{\pi(1)} < a_{\pi(2)} < \dots < a_{\pi(n)}$)
 - Given a graph G = (V, E), is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \leq i \leq |V-1|$? (Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

- ▶ example: Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$, find the path p between s and t such that the sum of distances of the edges in p is minimized.
- ▶ decision version: Given a graph G = (V, E), two vertices $s, t \in V$, an integer distance d(e) for each $e \in E$ and an integer D, is there a path p between s and t such that the sum of distances of the edges in p is at most D?

Observation 1:

In most of these lectures we will deal with decision problems

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - ▶ Given a graph G = (V, E) and a positive weight w(e) for each $e \in E$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- \blacktriangleright < I >: string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

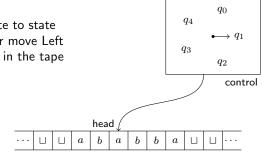
A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- \blacktriangleright < I >: string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$
- ▶ |*I*|: size of the input (in binary)
 - $\blacktriangleright \log_2 a_1 + \log_2 a_2 + \ldots \log_2 a_n$
 - $|V|^2$
 - $\bullet |V|^2 + \sum_{e \in E} \log_2 w(e)$

Turing machine

▶ memory: an infinite tape

- initially, it contains the input string
- move the head left or right
- read and/or write to current cell
- control states
 - finite number of them
 - one current state
- At each step:
 - move from state to state
 - read or write or move Left or move Right in the tape



Turing machine: formal definition

A Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states
- $\blacktriangleright\ \Sigma$ is the input alphabet not containing the blank symbol \sqcup
- $\blacktriangleright\ \Gamma$ is the tape alphabet, where $\sqcup\in\Gamma$ and $\Sigma\subseteq\Gamma$
- ▶ $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- ► δ : the transition function from $(K \setminus H) \times \Gamma$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})$

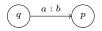
Turing machine: formal definition

A Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

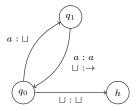
- K is a finite set of states
- \blacktriangleright Σ is the input alphabet not containing the *blank* symbol \sqcup
- $\blacktriangleright\ \Gamma$ is the tape alphabet, where $\sqcup\in\Gamma$ and $\Sigma\subseteq\Gamma$
- $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- δ : the transition function from $(K \setminus H) \times \Gamma$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})$

In general, $\delta(q,a)=(p,b)$ means that when M is in the state q and reads a in the tape, it goes to the state p and

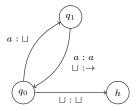
- if $b \in \Sigma$, writes b in the place of a
- if $b \in \{\leftarrow, \rightarrow\}$, moves the head either Left or Right



q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)



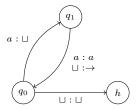
q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)



 $(q_0, \underline{a}aa)$

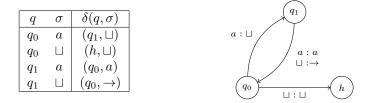
Consider the Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ where $K = \{q_0, q_1, h\}, \quad \Sigma = \{a\}, \quad \Gamma = \{a, \sqcup\}, \quad s = q_0, \quad H = \{h\},$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	\Box	(h,\sqcup)
q_1	a	(q_0, a)
q_1	\Box	(q_0, \rightarrow)

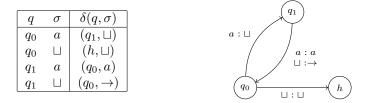


 $(q_0,\underline{a}aa) \vdash_M (q_1,\underline{\sqcup}aa)$

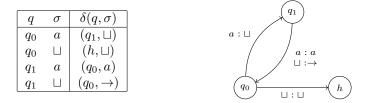
Consider the Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ where $K = \{q_0, q_1, h\}, \quad \Sigma = \{a\}, \quad \Gamma = \{a, \sqcup\}, \quad s = q_0, \quad H = \{h\},$ and δ is given by the table. How does M proceed?



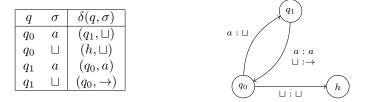
 $(q_0,\underline{a}aa) \vdash_M (q_1,\underline{\sqcup}aa) \vdash_M (q_0,\underline{\sqcup}\underline{a}a)$



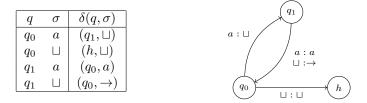
$$\begin{array}{rcl} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) & \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \end{array}$$



$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) & \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) & \vdash_M & (q_0,\underline{\sqcup} \perp \underline{a}) \end{array}$$



$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$



$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$

$$\begin{array}{cccc} (q_0,\underline{a}aa) & \vdash_M & (q_1,\underline{\sqcup}aa) \vdash_M & (q_0,\underline{\sqcup}\underline{a}a) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}a) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{a}) \\ & \vdash_M & (q_1,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \vdash_M & (q_0,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}\underline{)} \\ & \vdash_M & (h,\underline{\sqcup}\underline{\sqcup}\underline{\sqcup}) \end{array}$$

Formalize the notation

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head

Formalize the notation

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head

• example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Formalize the notation

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head
- example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Initial configuration: $(s,\underline{a}w)$ where $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma$, $w \in \Sigma^*$ and aw is the *input string*

Formalize the notation

Definition

A configuration of a Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^* \times \Gamma^*((\Gamma \setminus \{\sqcup\}) \cup \{\epsilon\})$.

- ▶ informally: a triplet describing
 - the current state
 - the contents of the tape on the left of the head (including head's position)
 - the contents of the tape on the right of the head
- example: $(q_1, \sqcup a, a)$ or simply $(q_1, \sqcup \underline{a}a)$ or simply $(q_1, \underline{a}a)$

Initial configuration: $(s,\underline{a}w)$ where $M = (K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma$, $w \in \Sigma^*$ and aw is the *input string*

Halted configuration: a configuration whose state belongs to H

 $\blacktriangleright \text{ example: } (h, \sqcup \sqcup \sqcup \sqcup, \epsilon) \text{ or simply } (h, \sqcup \sqcup \sqcup \sqcup) \text{ or simply } (h, \underline{\sqcup})$

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 using a *sequence* of configurations, then we say that C_1 yields C_2 and we write

 $C_1 \vdash^*_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 in a *single step*, then we write

 $C_1 \vdash_M C_2$

Definition

Consider a Turing Machine M and two configurations C_1 and C_2 of M. If M can go from C_1 to C_2 using a *sequence* of configurations, then we say that C_1 yields C_2 and we write

 $C_1 \vdash^*_M C_2$

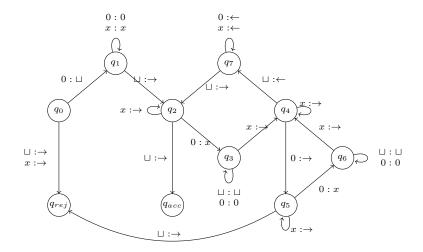
Definition

A computation of a Turing Machine M is a sequence of configurations C_0, C_1, \ldots, C_n , for some $n \ge 0$, such that

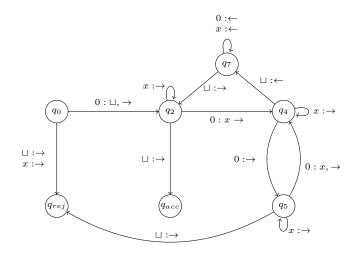
$$C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \ldots \vdash_M C_n$$

The **length** of the computation is n (or it performs n steps).

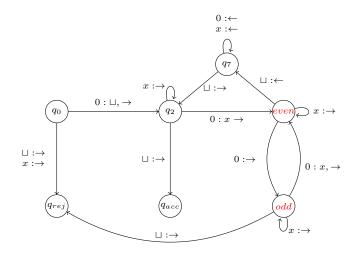
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



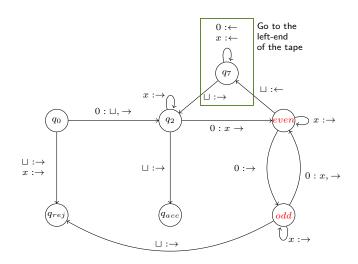
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



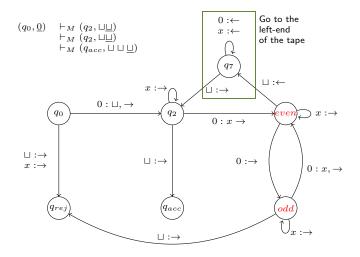
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



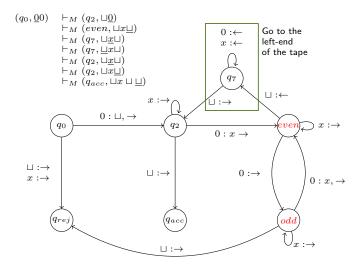
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



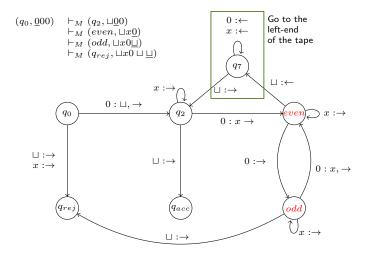
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



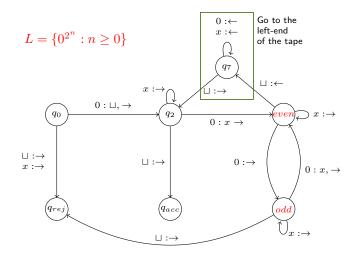
$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$



$$\Sigma = \{0\}, \quad \Gamma = \{0, x, \sqcup\}, \quad s = q_0, \quad H = \{q_{acc}, q_{rej}\}$$

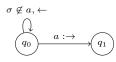


Exercise

Construct the Turing Machine that accepts the language

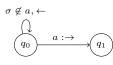
 $L = \{ w \# w : w \in \{0, 1\}^* \}$

A more general notation for Turing Machines



Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

A more general notation for Turing Machines

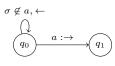


Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

Define similar simple Turing Machines

• examples: L, R, L_a , R_a , L^2 , R^2 , a, \sqcup , etc

A more general notation for Turing Machines



Turing Machine $L_a = (K, \Sigma, \Gamma, \delta, s, H)$ where: $-K = \{q_0, q_1\}$ $-a \in \Sigma$ $-s = q_0$ $-H = \{q_1\}$

Define similar simple Turing Machines

• examples: L, R, L_a , R_a , L^2 , R^2 , a, \sqcup , etc

► Combine simple machines to construct more complicated ones

1. Run M_1

 $\begin{array}{c}
M_3 \\
\uparrow b \\
M_1 \xrightarrow{a} M_2
\end{array}$

- 2. If M_1 finishes and the head reads a then run M_2 starting from this a
- 3. Else run M_3 starting from this b

What is the goal of the following Turing Machine?

$$\begin{array}{c} & & & \\ & & & \\ \searrow L_{\sqcup} \rightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a \\ & & & \\ & & \downarrow \sqcup \\ & & \\ & & \\ R_{\sqcup} \end{array}$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $(\sqcup abc \underline{\sqcup}) \vdash^*_M (\underline{\sqcup} abc \sqcup) \qquad (L_{\sqcup})$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup$$
$$R_{\sqcup}$$

 $\begin{array}{ccc} (\sqcup abc \sqcup) & \vdash_M^* & (\sqcup abc \sqcup) & & (L_{\sqcup}) \\ & \vdash_M & (\sqcup \underline{a}bc \sqcup) & & (R) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup$$
$$R_{\sqcup}$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\sqcup abc \sqcup) & & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & & (\sqcup) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\amalg abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup$$
$$R_{\sqcup}$$

$$\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\amalg abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \bigsqcup bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \\ & \vdash_{M} & (\sqcup \sqcup bc \sqcup \underline{a}) & (a) \end{array}$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

 $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\amalg abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \\ & \vdash_{M}^{*} & (\sqcup \sqcup bc \sqcup \underline{\sqcup}) & (R_{\sqcup}^{2}) \\ & \vdash_{M} & (\sqcup \sqcup bc \sqcup \underline{a}) & (a) \\ & \vdash_{M}^{*} & (\sqcup \underline{\sqcup}bc \sqcup a) & (L_{\sqcup}^{2}) \end{array}$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$

- $\begin{array}{cccc} (\sqcup abc \sqcup) & \vdash_{M}^{*} & (\sqcup abc \sqcup) & (L_{\sqcup}) \\ & \vdash_{M} & (\sqcup \underline{a}bc \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \underline{\sqcup}bc \sqcup) & (\sqcup) \end{array}$
 - $\vdash^*_M (\sqcup \sqcup bc \sqcup \underline{\sqcup}) (R_{\sqcup}^2)$
 - $\vdash_M (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$
 - $\vdash^*_M \ (\sqcup \underline{\sqcup} bc \sqcup a) \ (L^2_{\sqcup})$
 - $\vdash_M \quad (\sqcup \underline{a} bc \sqcup a) \qquad (a)$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow \underset{R_{\sqcup}}{\overset{a \neq \sqcup}{\longrightarrow}} \sqcup \underset{R_{\sqcup}}{\overset{a \neq \bot}{\longrightarrow}} \sqcup \underset{R_{\sqcup}}{\overset{a z \perp}{\longrightarrow}} \sqcup \underset{R_{\sqcup}}{\overset{a z \perp}{\longrightarrow}} L_{\sqcup}^{2}$$

 $\begin{array}{ccc} (\sqcup abc \sqcup) & \vdash_M^* & (\sqcup abc \sqcup) & & (L_{\sqcup}) \\ & \vdash_M & (\sqcup \underline{a}bc \sqcup) & & (R) \end{array}$

$$\vdash_M (\sqcup \underline{\sqcup} bc \sqcup) \qquad (\sqcup)$$

$$\vdash_M^* (\sqcup \sqcup bc \sqcup \underline{\sqcup}) \quad (R_{\sqcup}^2)$$

$$\vdash_M (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$$

$$\vdash_M^* (\sqcup \underline{\sqcup} bc \sqcup a) \qquad (L^2_{\sqcup})$$

$$\vdash_M (\sqcup \underline{a} bc \sqcup a) \qquad (a)$$

$$\vdash_M \quad (\sqcup a\underline{b}c \sqcup a) \qquad (R)$$

What is the goal of the following Turing Machine?

$$> L_{\sqcup} \longrightarrow R \xrightarrow{a \neq \sqcup} \sqcup R_{\sqcup}^{2} a L_{\sqcup}^{2} a$$
$$\downarrow \sqcup R_{\sqcup}$$

$$\vdash_M (\sqcup \underline{\sqcup} bc \sqcup) \qquad (\sqcup)$$

$$\vdash^*_M \quad (\sqcup \sqcup bc \sqcup \underline{\sqcup}) \quad (R^2_{\sqcup})$$

$$\vdash_M \quad (\sqcup \sqcup bc \sqcup \underline{a}) \quad (a)$$

$$\vdash_M^* (\sqcup \underline{\sqcup} bc \sqcup a) \qquad (L^2_{\sqcup})$$

$$\vdash_M (\sqcup \underline{a} bc \sqcup a) \qquad (a)$$

$$\vdash_M (\sqcup a\underline{b}c \sqcup a) \qquad (R)$$

Solution:

transforms $\sqcup w \sqcup$ to $\sqcup w \sqcup w \sqcup$

Exercises

Construct the Turing Machines that implement the following operations

- 1. copy reversed (from $\sqcup w \sqcup$ to $\sqcup w w^R \sqcup$)
- 2. right shift (from $\sqcup w \sqcup$ to $\sqcup \sqcup w \sqcup$)
- 3. left shift (from $\sqcup w \sqcup$ to $w \sqcup$)
- 4. delete w (from $\sqcup w \sqcup$ to $\sqcup \sqcup$)

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- ▶ what is allowed?

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

Example

M = "On input w:

- 1. scan the input from left to right to be sure that is member of $a^{\ast}b^{\ast}c^{\ast}$ and reject if not
- 2. find the leftmost a in the tape and if such an a does not exist, then
 - ▶ scan the input for a *c* and if such a *c* exists then *reject* else *accept*
- 3. replace a by \hat{a}
- 4. scan the input for the leftmost b and if such a b does not exist, then restore all b's (replace all \hat{b} by b) and goto 2
- 5. replace b by \hat{b}
- 6. scan to the right for the first c and if such a c does not exist, then reject
- 7. replace c by \hat{c} and goto 4"

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? \rightarrow almost everything!!

Example

$$L = \{a^i b^j c^k : i \times j = k\}$$

M = "On input w:

- 1. scan the input from left to right to be sure that is member of $a^{\ast}b^{\ast}c^{\ast}$ and reject if not
- 2. find the leftmost a in the tape and if such an a does not exist, then
 - scan the input for a c and if such a c exists then reject else accept
- 3. replace a by \hat{a}
- 4. scan the input for the leftmost b and if such a b does not exist, then restore all b's (replace all \hat{b} by b) and goto 2
- 5. replace b by \hat{b}
- 6. scan to the right for the first c and if such a c does not exist, then reject
- 7. replace c by \hat{c} and goto 4"

Exercise

Give the high-level description for a Turing Machine that accepts the following language

 $L = \{ \#x_1 \# x_2 \# \dots \# x_\ell : \text{ each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

More exercises

Ex. 1 Consider the Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ where $K = \{q_0, q_1, q_2, h\}, \Sigma = \{a\}, \Gamma = \{a, \sqcup, \#\}, s = q_0, H = \{h\}$ and δ is given by the following table. Let $n \ge 0$. Describe what M does when started in the configuration $(q_0, \#a^na)$.

Ex. 2 Give the full details of the following three Turing Machines.

$$\begin{array}{ccc} & & & \\ & & & \\ > LL & & > R & & > L \xrightarrow{\sqcup} R \end{array}$$

Ex. 3 Explain what the following Turing Machine does.

$$> R \xrightarrow{a \neq \sqcup} > R \xrightarrow{b \neq \sqcup} > R \sqcup a R \sqcup b$$

Ex. 4 Give the high-level definition of a Turing Machine that finds the maximum between three integers encoded in *unary*. Which is the length of the computation?

An application to draw and play with Turing Machines

http://www.jflap.org/