
Fundamental Computer Science

Giorgio Lucarelli (revisited by Denis Trystram)

2019

Organization

Classes

I 30 hours in total

I Theory: 50%

I Exercises: 50%

Evaluation

I Exams: 70%

I Tests during Exercises sessions: 30%

References

1. Harry R. Lewis and Christos H. Papadimitriou, Elements of the
Theory of Computation, Prentice-Hall

2. Christos H. Papadimitriou, Computational Complexity, Pearson

3. S. Arora and B. Barak, Computational complexity – a modern
approach, Cambridge

4. Vijay V. Vazirani, Approximation Algorithms, Springer

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi04eD5o-vYAhWJJ-wKHRGxBeEQFggyMAA&url=https%3A%2F%2Fwww.u-cursos.cl%2Fingenieria%2F2010%2F2%2FCC3102%2F1%2Fmaterial_docente%2Fbajar%3Fid_material%3D322214&usg=AOvVaw0fgeZdfSwd5IdtZQZ_o9N1
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi04eD5o-vYAhWJJ-wKHRGxBeEQFggyMAA&url=https%3A%2F%2Fwww.u-cursos.cl%2Fingenieria%2F2010%2F2%2FCC3102%2F1%2Fmaterial_docente%2Fbajar%3Fid_material%3D322214&usg=AOvVaw0fgeZdfSwd5IdtZQZ_o9N1
https://www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf

What is an Algorithm ?

Informally: a procedure composed by a set of steps that solves a problem

Desired properties

I clearly defined steps (formalization)

I efficiency (complexity - how many steps?)

I termination

What is an Algorithm ?

Informally: a procedure composed by a set of steps that solves a problem

Desired properties

I clearly defined steps (formalization)

I efficiency (complexity - how many steps?)

I termination

History

I Etymology:
I Al-Khwārizm̄ı – a Persian mathematician of the 9th century
I αριθµóς – the Greek word that means “number”

I Euclid’s algorithm for computing the greatest common divisor (3rd
century BC)

I End of 19th century - beginning of 20th century: mathematical
formalizations (proof systems, axioms, etc). Is there an algorithm for
any problem?

I Entscheidungsproblem (a challenge proposed by David Hilbert
1928): create an algorithm which is able to decide if a mathematical
statement is true in a finite number of operations

I Church-Turing thesis (1930’s): provides a formal definition of an
algorithm (λ-calculus, Turing machine) and show that a solution to
Entscheidungsproblem does not exist

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}

L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}
corresponding to a Hamiltonian Path}

Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}

corresponding to a Hamiltonian Path}

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question
I example: Given a number n, is n prime?
I other examples???

I other examples:
- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer
I example: Given a graph G = (V,E), two vertices s, t ∈ V and an

integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?

(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Decision problem: a problem that can be posed as an yes/no question

I example: Given a number n, is n prime?

I other examples:

- Given a set of numbers A = {a1, a2, . . . , an}, does the permutation
π correspond to an increasing ordering of the numbers in A?
(i.e., is it true that aπ(1) < aπ(2) < . . . < aπ(n))

- Given a graph G = (V,E), is there a permutation π of the vertex set
such that (vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
(Hamiltonian Path)

Optimization problem: a problem of searching for the best answer

I example: Given a graph G = (V,E), two vertices s, t ∈ V and an
integer distance d(e) for each e ∈ E, find the path p between s and
t such that the sum of distances of the edges in p is minimized.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D, is there
a path p between s and t such that the sum of distances of the
edges in p is at most D?

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Preliminaries

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2
I |V |2 +

∑
e∈E log2 w(e)

Turing machine

I memory: an infinite tape
I initially, it contains the input string
I move the head left or right
I read and/or write to current cell

I control states
I finite number of them
I one current state

I At each step:
– move from state to state
– read or write or move Left

or move Right in the tape

. . . t t a b a b b a t t . . .

control

q0

q1

q2

q3

q4

head

Turing machine: formal definition

A Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b

Turing machine: formal definition

A Turing Machine (M) is a sextuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa)

`M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa)

`M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta)

`M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t)

`M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

A first example

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape on the left of the head (including head’s

position)
I the contents of the tape on the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc q5

q3 q6

q0 q2 q4

q1 q7

t :→
x :→

0 : t t :→

0 : 0
x : x

0 : x

x :→

t :→

x :→

t : t
0 : 0

x :→

0 :→

t :←

0 : x

t :→ x :→

x :→

t : t
0 : 0

0 :←
x :←

t :→

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc q5

q0 q2 q4

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tape

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tape

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tape

(q0, 0) `M (q2,tt)
`M (q2,tt)
`M (qacc,t t t)

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tape

(q0, 00) `M (q2,t0)
`M (even,txt)
`M (q7,txt)
`M (q7,txt)
`M (q2,txt)
`M (q2,txt)
`M (qacc,tx t t)

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tape

(q0, 000) `M (q2,t00)
`M (even,tx0)
`M (odd,tx0t)
`M (qrej ,tx0 t t)

A second example

Σ = {0}, Γ = {0, x,t}, s = q0, H = {qacc, qrej}

qrej qacc odd

q0 q2 even

q7

t :→
x :→

0 : t,→

0 : x→

x :→

t :→

x :→

0 :→

t :←

0 : x,→

t :→ x :→

0 :←
x :←

t :→

Go to the
left-end
of the tapeL = {02n : n ≥ 0}

Exercise

Construct the Turing Machine that accepts the language

L = {w#w : w ∈ {0, 1}∗}

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt

Exercises

Construct the Turing Machines that implement the following operations

1. copy reversed (from twt to twwRt)

2. right shift (from twt to t t wt)

3. left shift (from twt to wt)

4. delete w (from twt to tt)

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed?

→ almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example

M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? → almost everything!!

Example L = {aibjck : i× j = k}
M = “On input w:

1. scan the input from left to right to be sure that is member of a∗b∗c∗ and
reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”

Exercise

Give the high-level description for a Turing Machine that accepts the
following language

L = {#x1#x2# . . .#x` : each xi ∈ {0, 1}∗ and xi 6= xj for each i 6= j}

More exercises

Ex. 1 Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where
K = {q0, q1, q2, h}, Σ = {a}, Γ = {a,t,#}, s = q0, H = {h} and
δ is given by the following table. Let n ≥ 0. Describe what M does
when started in the configuration (q0,#a

na).
q q0 q0 q0 q1 q1 q1 q2 q2 q2
σ a t # a t # a t #

δ(q, σ) (q1,←) (q0,t) (q0,→) (q2,t) (h,t) (q1,→) (q2, a) (q0,←) (q2,→)

Ex. 2 Give the full details of the following three Turing Machines.

> LL > R > L R
t

Ex. 3 Explain what the following Turing Machine does.

> R > R > RtaRtb
a 6= t b 6= t

Ex. 4 Give the high-level definition of a Turing Machine that finds the
maximum between three integers encoded in unary. Which is the
length of the computation?

An application to draw and play with Turing Machines

http://www.jflap.org/

http://www.jflap.org/

