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UE Mathematics for Computer Science

Final exam December 19, 2012 (3 hours)
Only personal hand-written notes are allowed.
Use separated sheets for problems 1-2 (part I) and problems 3-4 (part II).
All problems are independent from each other.
Number of points given for each problem is given for information purposes only and is subject
to modifications without notice.

Part I
Problem 1: Planar Graphs (6 points)

Question 1.1 : Preliminary example

Let consider three dogs and three neighboring houses, can you find a path from each
dog to each house such that no two paths intersect ?

The drawing below has four faces:

!
Face 1, which extends off to infinity in all directions, is called the outside face. It turns out that
the number of vertices and edges in a connected planar graph determine the number of faces in
every drawing. This result is known as Euler formula, we are going to prove it.

For every drawing of a connected planar graph G the following expression holds:

n−m+ f = 2

where n is the number of vertices, m is the number of edges, and f is the number of
faces.

Let remark that this formula is true for graph above, n = 4, m = 6, and f = 4.
The proof is by induction on the number of edges. Let P(m) be the proposition that n −

m+ f = 2 for every drawing of a planar graph G with m edges.
Question 1.2 :

Prove the basis of the induction.
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Consider now a connected planar graph G with m+ 1 edges.
Question 1.3 :

Prove the induction for acyclic graphs.

Question 1.4 :

We consider now a graph with (at least) a cycle (let denote it by C). Select a spanning
tree and an edge (u, v) in C, but not in the tree. Sow how to apply the induction
hypothesis by removing (u, v).

Problem 3: Tournaments (4 points)

Suppose that n players compete in a round-robin tournament. Thus, for every pair of players u
and v, either u beats v or else v beats u. Interpreting the results of a round-robin tournament can
be problematic. There might be all sorts of cycles where x beat y, y beat z, yet z beat x. Graph
theory provides at least a partial solution to this problem.

The results of a round-robin tournament can be represented with a tournament graph. This
is a directed graph in which the vertices represent players and the edges indicate the outcomes
of games. In particular, an edge from u to v indicates that player u defeated player v. In a
round-robin tournament, every pair of players has a match. Thus, in a tournament graph there
is either an edge from u to v or an edge from v to u for every pair of vertices u and v. Recall
that a directed Hamiltonian path is a directed walk that visits every vertex exactly once.
Question 2.1 :

Show that in every round-robin tournament, there exists a ranking of the players such
that each player lost to the player ranked one position higher. In other words, every
tournament graph contains a directed Hamiltonian path.

Hint: The proof is by induction. Let P(n) be the proposition that every tour-
nament graph with n vertices contains a directed Hamiltonian path. The idea is to
isolate an arbitrary vertex and to construct a hamiltonian path using paths of lower
dimensions.

Part II

Problem 3: Labels (5 points)

A label identifier, for a computer system, consists of one letter followed by three digits.
Question 3.1 : No constrained labels

If repetitions are allowed, how many distinct label identifiers are possible ?

To check the validity of the label, we assume that the sum of the digits are 0modulo 3.
Question 3.2 : No constrained labels

How many distinct label identifiers, with checksum 0 modulo 3 are possible ?



3

Question 3.3 : Label generator

Design an algorithm that generates uniformly a random label and prove that it is a
uniform generator. We suppose given a random() function that provides a sequence
of independent real numbers uniformly distributed on [0, 1)

Problem 4: Monotonicity (5 points)

Question 4.1 :

Compute f(m,n) the number of functions from {1, 2, · · · ,m} to {1, 2, · · · , n}.

Question 4.2 :

Propose a simple algorithm that generates uniformly a function from {1, 2, · · · ,m}
to {1, 2, · · · , n}.

Question 4.3 :

Compute the expected number of fixed points of a uniformly generated function
from {1, 2, · · · ,m} to {1, 2, · · · ,m}.

A function f is said to be strictly increasing if for all x < y we have f(x) < f(y).
Question 4.4 :

For m 6 n use combinatorial arguments to compute c(m,n) the number of strictly
increasing functions from {1, 2, · · · ,m} to {1, 2, · · · , n}.

A function f is said to be nondecreasing if for all x < y we have f(x) 6 f(y).
Question 4.5 :

Use combinatorial arguments to compute d(m,n) the number of nondecreasing func-
tions from {1, 2, · · · ,m} to {1, 2, · · · , n}.

Question 4.6 :

Design an algorithm that generates uniformly a nondecreasing function from
{1, 2, · · · ,m} to {1, 2, · · · , n}.

Question 4.7 : (bonus)

Compute the expected number of fixed points of a uniformly generated nondecreas-
ing function from {1, 2, · · · ,m} to {1, 2, · · · ,m}.


