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Abstract— The aim of this short note is to provide a simple
introduction of probabilistic modelling in computer science. Basic
definition of probability language is given with its semantic. Then
concepts of random variable and expectation are detailed for
discrete spaces.
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I. MODELING RANDOMNESS

In computer science, the aim is to build programs that run
on computer and solve complex problems. These problems
are instantiated at runtime so that the real input is not known
when the program is designed and the programmer should deal
with this uncertainty. Moreover, a program is usually written to
solve repeatedly a problem with different instances and should
be efficient on many inputs.

To take into account data variability, there are two kinds of
approaches. The first one, worst case analysis, gives an upper
bound on the complexity of algorithms. So the worst case guar-
antees that the program finishes before some time. But in many

practical situations, this worst case does not happen frequently
and the bound is rarely reached. The second approach, average
case analysis suppose that the inputs of programs obey to
some statistical regularity and as a consequence the execution
time could be considered as a random variable with some
probability distribution depending on the input distribution.

To model inputs variability and uncertainty a formal lan-
guage is needed. This language is the probability language
(section II) based on set axiomatic formalism enriched with
specific axioms for probability. The formal probability theory
build a framework of mathematical theorems, such as the law
of large numbers, the Central limit theorem, etc. The main
difficulty is not as deriving results but in the modelling process
and the semantic associated to probabilities.

This difficulty comes from the fact that probabilities are
commonly used in many real life situations : probability to
have a sunny weather next day, that a baby is boy, to have a
crash accident, to win in a lotterie, to have a full in a poker
game, etc.

As an illustration example, try to solve these following
questions
Example 1 : Boys and girls
Mr Smith has two children, one is a boy, what is the
probability that the other is a girl ?

Example 2 : Pascal and Chevalier de Méré discussion
Consider the dice game with the following rules :

• bet 1
• throw two dices and sum the results
• if the result is 11 or 12 you earn 11 (including your bet)
• if not you loose your bet.

The Chevalier de Méré says ‘playing this game a sufficiently
long time and I’ll get a fortune” and Pascal argues the
contrary. Who is wrong and what were the two arguments ?

Example 3 : The Monty Hall problem
Consider the TV show game, there are 3 closed doors beside
one there is a magnificent car, beside the two others nothing.

• TV host : Please choose one door. As example you choose
door 2.

• TV host : I want to help you. I open one of the remaining
door with nothing. For example he opens door 1.

• TV host : in fact you could modify your first choice, do
you change your initial decision of choosing door 2.

• As example you decide to change and you open door 3.



You win if the car is beside.
What is a good strategy : change or not your initial decision
?
All the previous examples generate discussions among people,
many websites give and comment solutions. The ambiguity is
first in the modelling and next in the way the probability values
are interpreted.

II. FORMAL PROBABILITY LANGUAGE

The probability language was funded in 1938 by Andreı̈
Nicolai Kolmogorov [1] in the famous monograph Grundbe-
griffe der Wahrscheinlichkeitsrechnung. His theoretical con-
struction is based on the set theory (initiated by Cantor)
coupled with the measure theory established by Lebesgue.

A. Reality and Events

The formalism and the composition rules are all based on
set computation. Consider now a set Ω, a set A of parts of Ω
is called a σ-field if it satisfies the following properties :

1) Ω ∈ A;
2) If A ∈ A then A ∈ A (the complement of A in Ω is in
A);

3) Let {An}n∈N a denumerable set of element of A then⋃
n∈N

An ∈ A;

(σ-additivity property)
Interpretation The set Ω model the real world, which is

impossible to capture with all of its complexity. Consequently
we observe the reality with measurement tools and get partial
information on it. An event is a fact we could observe on the
real situation. It supposes the existence of an experience that
produce the event which is observable.

The properties of events have the following meaning :
1) Ω ∈ A means that the could observe the real world.
2) If A ∈ A then A ∈ A. If we could observe a given fact,

we could also observe that this fact does not occur.
3) If A and B are events, then A ∪ B is an event. If we

could observe two facts then we can to observe them
simultaneously.

Example 4 : Requests on a web server
Consider a web server that delivers web pages according
requests from clients spread on the Internet. The set Ω is
the set of all possible clients with their own capacities, their
location, etc. In this case an event is what you could observe.
From the server point of view, the observables are the request
type, the Internet address of the client. So the request ask for
page foo is an event, the origin of the request is from the
US domain is another event,... The fact that the end user that
sends the request is a boy teenager is not observable and then
is not an event.

Deriving from the set theory, the following properties are
easy to prove and the semantic is left to the reader.

Proposition 1 (Events manipulation): Let A,B,C be
events of Ω :

• A = A
• A ∪ (B ∪ C) = (A ∪B) ∪ C = A ∪B ∪ C
• A ∩ (B ∩ C) = (A ∩B) ∩ C = A ∩B ∩ C
• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
• A ∪B = A ∩B
• A ∩B = A ∪B

B. Probability Measure

The idea of probability is to put some real value on events,
then the probability function is defined on the set of events
and associate to each event a real in [0, 1].

P : A −→ [0, 1];
A 7−→ P(A).

It verifies the following rules :
1) P(Ω) = 1;
2) If {An}n∈N is a sequence of disjoint events (for all (i, j),

Ai ∩Aj = ∅) then

P

(⋃
n

An

)
=
∑
n

P(An);

σ-additivity property.
3) If {An}n∈N is a non-increasing sequence of events,

A1 ⊇ A2 ⊇ An ⊇ · · · converging to ∅ (
⋂+∞
i=1 Ai = ∅)

then
lim

n→+∞
P(An) = 0.

This continuity axiom is usefull for non finite sets of
events.

From these axioms we deduce many theorems verified by the
formal system. The proof of the following propositions are left
to the reader.

Proposition 2 (Probability properties): Let A and B events
of Ω :

1) P(A ∪B) = P(A) + P(B)− P(A ∩B);
2) P(A) = 1− P(A);
3) P(∅) = 0;
4) If A ⊂ B, then P(A) 6 P(B) (P is a non-decreasing

function).
5) If A ⊂ B, then P(B −A) = P(B)− P(A).
Interpretation The semantic of a probability measure is

related to experimentation. Consequently it supposes that we
can repeat infinitively experiments in the same conditions.
Then the probability of an event (observable) A is the ab-
straction of the proportion that this event is realized in a
large number of experiments. Consequently the probability
is an ideal proportion, assuming that we could produce an
infinite number of experiments and compute the asymptotic
of frequencies.

C. Conditional Probability

Consider an event B such that P(B) > 0. The conditional
probability of an event A knowing B, denoted by P(A|B) is
given by

P(A|B) =
P(A ∩B)

P(B)
.



It defines a new probability measure on the set of event A
(check it as an exercise).

Consider a partition of Ω in a countable set of observable
events {Bn} (P(Bn) > 0). The law of total probability states
that for all A ∈ A

P(A) =
∑
n

P(A|Bn)P(Bn).

The Bayes’ theorem reverse this scheme by

P(A|B),=
P(B|A)P(A)

P(B)
.

Interpretation The meaning of conditional probability
comes from the fact that we could observe reality through
several measurement instruments. For example, consider a
transmission protocol. We observe both the size of messages
and the transfer time of these. Then we want to explain the
transfer time by the message size. From many experiments
we deduce the probability distribution of the transfer given
a size of message. The conditional probability considers ex-
ternal information (event) which is given a-priori. The law
of total probability explains that if we have a set of disjoint
alternatives, we could compute the probability of an event by
computing its probability knowing each alternative and then
combine all of them with the weight (probability) of each
alternative.

D. Independence

Two events A and B are independents if they satisfy

P(A ∩B) = P(A).P(B).

This is rewritten, assuming P(B) > 0

P(A|B) = P(A).

Interpretation Independence is related to the causality prob-
lem. If two events are not independent we could suspect
a hidden relation between them, then an event could be
the “cause” of the other. On the other side two events are
independent if in the observed phenomenon there are no
possible relations between the events. If we throw two dices,
there is no reason that the result of the first dice depends on
the result of the second dice. Moreover if the two observations
are not independent (statistically on many experiments), we
should search the physical reason (the cause) that couples the
results of the dices.

III. DISCRETE RANDOM VARIABLES

In fact, the modelling process cannot capture the whole
complexity of the physical reality. Then the Ω set is not
accessible and the only way to get information is to observe the
reality via filters (measurement instruments). Then we consider
a random variable X as a function in a set E which is “well
known” like (finite sets, integers, real numbers, real vectors,...)
with an adequate system of events B,

X : Ω −→ E

ω 7−→ X(ω)

such that event

{X ∈ B} ∆
= {ω ∈ Ω such that X(ω) ∈ B} ∈ A,

and then induces a probability measure on B denoted by PX
image of the probability measure P by X . The probability PX
is called the law of the random variable X .
Interpretation This is why the fundamental set is called Ω
the ultimate limit which is practically unreachable. All things
that could be observed are through random variables. Then in
stochastic modelling, the Ω fundamental set is not used and
the system is described by random variables with given laws.
As an example, we model a dice trow by a random variable
X with values in E = {1, 2, 3, 4, 5, 6} and a uniform law of
probability, PX(i) = P(X = i) = 1

|E| = 1
6 .

A. Characteristics of a Probability Law

When E is discrete, we usually choose the set B of events
as the set of all parts of E. The law of X is consequently given
by the probability of all elements (considered as elementary
parts of E). We get the probability of any event B by

P(X ∈ B) =
∑
x∈B

P(X = x).

The function fX defined by

fX : E −→ [0, 1],

x 7−→ fX(x) = P(X = x),

is called the probability density function of X . We remark
that fX is non-negative and satisfies∑

x∈E
fX(x) = 1.

B. Mode

We define the mode of a discrete random variable distribu-
tion by

Mode(X) = argmin
x∈E

fX(x),

it denotes a value that achieves the maximum of probability.

C. Median and Quantiles

When the set E is totally ordered, we define the cumulative
distribution function FX by

FX(x) = P(X 6 x).

The function FX is non-decreasing and if E is Z or isomorph
to a part of Z we get

lim
n→−∞

FX(n) = 0 and lim
n→+∞

FX(n) = 1.

Because E is ordered, we define the median of the probability
law by the value Median satisfying

Median = argmax
x∈E

{
FX(x) 6

1

2

}
.



This is generalized by splitting the set E in parts with equal
probability. For example, quartiles are defined by

q1 = argmax
x∈E

{
FX(x) 6

1

4

}
, q2 = Median,

q3 = argmax
x∈E

{
FX(x) 6

3

4

}
.

Deciles are given by

di = argmax
x∈E

{
FX(x) 6

i

10

}
, for 1 6 i 6 10.

IV. THE EXPECTATION OPERATOR

When E is a richer structure (group, ring or field), we
compute other parameters of the law and particularly moments.
To simplify the text, we will consider only integer valued
random variables.

The expectation operator associates to a probability law the
quantity

EX ∆
=
∑
x∈E

xfX(x) =
∑
ω∈Ω

xP(X(ω) = x).

This is extended as an operator for any function h by

Eh(X) =
∑
x∈E

h(x)P(X = x).

A. Properties of E
The operator E is linear; for X and Y random variables

defined on the same probability space and λ, µ real coefficients

E(λX + µY ) = λEX + µEY.

The operator E preserve the natural order on Z.That is

If X 6 Y then EX 6 EY.

When X and Y are independent variables then

E(XY ) = EX.EY.

B. Variance and Moments

The order n moment of a probability law is defined by

Mn = EXn,

and the centralized moment of order 2 is called the variance
of the law and is given by

VarX = E(X − EX)2 = EX2 − (EX)2.

Usually the variance is denoted by σ2 and σ =
√
VarX is

called the standard deviation of X . The variance of random
variable satisfies the following properties :

VarX > 0;

VarX = 0 implies P(X = 0) = 1;

VaraX = a2VarX;

If X and Y are independent then

Var(X + Y ) = VarX + VarY.

Interpretation Parameters of probability laws try to synthe-
size the law in some value which could be compared with
others. The concept of central tendency : most probable value
(Mode), or value that splits the probability in two equal parts
(Median), or arithmetic mean (Expectation) represent the law
by one number that have its own semantic. Then one should
indicates how far the law could be from the central tendency.
The concept of variability around the central tendency gives
information on the spreading of the law. For the mode an
usual index of variability is the entropy (which is not in the
topic of this note and indicates how far the probability is from
the uniform distribution). For the median, quantiles shows
the distance in of probability and the variance corresponds
to the fluctuation around the mean value when experiments
are repeated (error theory, central limit theorem).

C. Sums of Independent Random Variables

Consider X,Y two independent random variables on N
with distribution p and q. The convolution product of the two
distributions, denoted by p ? q, is given by

p ? qk =
∑
i

pi.qk−i.

The convolution product corresponds to the sum of indepen-
dent variables, we have

P(X + Y = k) =
∑
i

P(X = i, Y = k − i)

=
∑
i

P(X = i)P(Y = k − i) =
∑
i

pi.qk−i

= p ? qk.

V. CLASSICAL PROBABILITY DISTRIBUTIONS

A. Bernoulli Law

The simplest probability law is obtained from the coin game,
a choice between 2 values, a random bit,... X follows the
Bernoulli law with parameter p ∈ [0, 1], denoted B(p), if

P(X = 1) = p = 1− P(X = 0).

We easily get

EX = p VarX = p(1− p).

This law represents the basic generator we could get for
randomness in computer science. All other laws are deduced
from infinite sequences of random bits.

B. Vectors of bits

We consider a random vector X = [X1, · · · , Xn] composed
of n independent random variables Xi identically distributed
with law B(p). Then we obtain the law of the vector by

P(X = x) = pH(x)(1− p)n−H(x) where x ∈ {0, 1}n,

and H(x) the Hamming weight of the bit vector x, if

x = [x1, · · · , xn], then H(x) =

n∑
i=1

xi.

From this formula many other laws could be computed



Binomial Law

The Binomial law Bin(n, p) is the law of H(X) where X
is a random bit vector with size n and probability p for each
bit. It takes values in {0, · · · , n} and the pdf is given by

P(X = k) =

(
n
k

)
pk(1− p)n−k.

The mean EX = np and the variance VarX = np(1− p).

C. Geometric law

For an infinite number of bits identically distributed the
index X of the first occurrence of 0 follows the geometric
distribution with parameter p denoted Geom(p). Its pdf is
given by

P(X = k) = (1− p)pk−1.

The mean and variance distribution are

EX =
1

1− p
and Var

p

(1− p)2
.

D. Poisson distribution

This law appears as an approximation of the Binomial
distribution when n is large and λ = np (the mean) is small
with regards to n. In that case, the number X of bits 1 has
the pdf

P(X = k) = e−λ
λk

k!
,

and the mean EX = λ and the variance VarX = λ.

VI. GENERATING FUNCTION

Definition 1 (Convolution): Let X et Y independent integer
valued random variables with respective density fX et fY . The
convolution of fX and fY is the density of X + Y denoted
by fX+Y = fX ∗ fY :

fX+Y (k) =

k∑
j=0

fX(j)fY (k − j).

Computing the convolution of probability densities, is usually
difficult. The idea is to change the point of view and transform
the density in another object (a function) such that operations
of convolution are transformed in operations on functions
(that should be simpler). The main mathematical tool that
provides such principles is the Fourier transform that could
be instantiated in the discrete case as generating functions.

Definition 2 (Generating function): Let X be an integer
valued random variable with density fX . The generating
function associated to X is the power series

GX(x) = E(xX) =
∑
k

xiP(X = k).

This power series converges for at least |x| 6 1 and the
coefficients of the series could be obtained by successive
derivation at 0,

P(X = k) =
G

(k)
X (0)

k!
,

where G
(k)
X is the kth derivative of GX (this is just the

application of the Taylor expansion of GX in 0).

The integral of the density is 1 implies that GX(1) = 1.
The bijection between positive formal series summing to 1
show that the generating function characterize completely the
probability distribution of X .

Proposition 3 (Properties of the generating function): The
generating function GX satisfies the following properties:
- GX is positive, non-decreasing and convex on [0, 1].
- Moments of X when finite are given by successive
derivations of GX in 1:

E(X) = G′X(1);
V ar(X) = G′′X(1) +G′X(1)−G′X(1)2;
and more generally
G

(n)
X (1) = E [X(X − 1)(X − 2) · · · (X − n+ 1)] .

Proposition 4 (Generating function and convolution): Let
X and Y independent integer valued random variables, then

GX+Y = GX .GY
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Laws and notations X(Ω) P(X = k) E(X) Var(X) GX(z)

Uniform U(n) [1, n]
1

n

n+ 1

2

(n2 − 1

12
z 1−zn

1−z

Bernoulli B(1, p) {0, 1} P(X = 1) = p
P(X = 0) = 1− p p p(1− p) (1− p) + pz

Binomial B(n, p) [0, n] Cknp
k(1− p)n−k np np(1− p) ((1 − p) +

pz)n

Geometric G(p) N∗ (1− p)k−1p
1

p

1− p
p2

z 1−p
1−(1−p)z

Poisson P(λ) N e−λ
λk

k!
λ λ eλ(z−1)

TABLE I
SUMMARY OF CLASSICAL DISCRETE PROBABILITY LAWS


