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Logarithms: the scaling functions

Definition
b is the base (positive real number).
log(x) is defined as the inverse of the exponentiation f (x) = bx :
x = blogb(x)

Using this definition and the basic property of the exponential, we
can establish most existing properties of the log.

logb(x · y) = logb(x) + logb(y)

logb(1) = 0 is a consequence of this definition, not by
convention!

loga(x) = loga(b) logb(x)
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Going further

Another useful expression of nloga(b)

nloga(b) = bloga(n)

Draw the shape of the log function

What are the links between the sum of the harmonic series
and the log?
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Geometric interpretation

draw the integral of 1/x
give the interpretation of the multiplicative rule
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Going further

natural logarithm, base e = 2.71828...

Base 2: the ”natural” log of 2 = 0.69314...

base 10: log(10−2) = −2

Most of them are irrational.
Example: prove that log(2) is irrational, by contradiction:
Assume it is p/q, then 10p/q = 2, thus 10p = 2q

impossible since the first ends by the digit 0 and the second by
2, 4, 6 or 8
Using the same argument, log(3) is irrational since the powers of 3
are odds.

Use of logs (in Computer Science)

space needed for coding integers, base 2
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Example of use:
The Master theorem

We study here Maths concepts and results that can be useful for
solving problems in algorithmic.
Principle of the divide and conquer paradigm

Motivation
Divide and conquer is a powerful paradigm for designing algorithms
More precisely, for problems whose input can be decomposed

Principle for a problem of size n:
If n is ”small” enough, we compute the value using any existing
method. Otherwise

1 Decompose the problem into k sub-problems of size ni .
2 Solve the k sub-problems of sizes ni (1 ≤ i ≤ k)1

3 Rebuild the original solution form the k partial solutions.

1Generally, the k sub-problems are solved by the same method (recursively) 6 / 17
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Recursive tree

Example

Merge sort
Cost: Θ(n · log2(n))

The method detailed for the analysis of the merge sort can be
generalized:

Principle:

Build the tree whose vertices are labelled by the cost of the
sub-operations and whose edges correspond to the partitioning of
the sub-problems.
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Cost analysis

n is the problem size.
The cost is obtained by solving the following recurrence equation:

T (1) ≤ Cste.

T (n) =
∑

1≤i≤k T (ni ) + c1(n) + c3(n)

where c1 et c3 are the respective costs of the decomposition phase
(1) and reconstruction/merge phase (3).
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Simplified cost analysis

Practically, most D&C methods consider partitions into a identical
sub-problems and with the same size ni = n

b .
Thus, the cost analysis simplifies into:

T (1) = 1

T (n) = a.T (nb ) + c(n)

for merge sort, a = b = 2 and c(n) = n
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Computing the cost

It is a hard question.
Some technical considerations for simplifying the computations:

Practically, the size of the instance n does not exactly divide
evenly.

The recomposition phase is simplified asymptotically.

The border conditions are taken in O(1) or Θ(n).
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Master Theorem

Cost analysis

a ≥ 1 et b > 1.

f (n) = Θ(1) if n ≤ n0

f (n) = a.f (nb ) + c(n) if n > n0

Here is the general formulation for solving this equation:

1 if c(n) ∈ O(nlogba−ε) then f (n) ∈ Θ(nlogba)

2 if c(n) ∈ Θ(nlogba) then f (n) ∈ Θ(nlogbalog(n))

3 if c(n) ∈ Ω(nlogba+ε) and if a.c(n/b) ≤ kf (n) for some
constant k < 1 then, f (n) ∈ Θ(c(n))

where ε is a positive real number
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Analysis of two simplified cases

Assume n is a perfect power of b (in other words, it is perfectly
divisible by b until reaching 1).

f (1) = 1

f (n) = a.f (nb ) + c (c is a positive constant)

f (1) = 1

f (n) = a.f (nb ) + n
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The simplest case

Function f is a simple linear recurrence.
In this case, the solution of f function of n is given by the
simplified equation below:

f (n) = (1 + logb n) · c if a = 1

=
1− alogb n

1− a
· c ≈ c

1− a
if a < 1

=
alogb n − 1

a− 1
· c if a > 1

(1)
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proof

Let write the expansion of the computations by replacing the
successive occurrences.

As soon as we detect a ”regular” pattern, we can infer the
general form...

f (n) = af (n/b) + c
= a

(
af (n/b2) + c

)
+ c

= a2f (n/b2) + (a + 1)c
= a2

(
af (n/b3) + c

)
+ (a + 1)c

= a3f (n/b3) + (a2 + a + 1)c
...

...

=
(
alogb n + · · ·+ a2 + a + 1

)
c

(2)
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Build a graphical representation for a = b = 2
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Case of a linear overhead
In this case, the value of f on any argument n is given by

f (n) = alogb nf (1) +

logb(n)−1∑
i=0

(a/b)i

 n

When a > b, the behavior of f (n) is dominated by the first term of
this solution:

alogb n · f (1) = nlogb a

When a < b, the behavior of f (n) is dominated by the second term
of this solution:

n ·
logb(n)−1∑

i=0

(a/b)i =

(
1 − (a/b)logb(n)

)
1− (a/b)

· n ≈ b

b − a
· n
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proof
We expose the algebraic pattern created by the recurrence by
“unfolding” recurrence.
As before, once we discern this pattern, we jump to the general
form (which can be verified via induction).

f (n) = af (n/b) + n
= a

(
af (n/b2) + n/b

)
+ n

= a2f (n/b2) + (an/b + n)
= a2

(
af (n/b3) + n/b2

)
+ (a/b + 1)n

= a3f (n/b3) + (a2/b2 + a/b + 1)n
...

= alogb nf (1) +

logb(n)−1∑
i=0

(a/b)i

 n
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