Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Denis TRYSTRAM Lecture notes MoSIG1

Oct. 2023

Recall: various bilinear progressions

Fibonacci sequence F(n+1) = F(n) + F(n-1) with F(0) = 1 and F(1) = 1

Lucas' numbers Same as Fibonacci with a different seed. L(n+1) = L(n) + L(n-1) with L(0) = 1 and L(1) = 3

Stern sequence

s(2n) = s(n) and s(2n+1) = s(n) + s(n+1) with d(0) = 0 and d(1) = 1

Derangements

$$d(n+1) = n(d(n-1) + d(n-2))$$
 with $d(0) = 1$ and $d(1) = 2$

Fibonacci numbers are everywhere

Recall

- Fibonacci numbers are the number of pairs of rabbits that can be produced at the successive generations.
- Starting by a single pair of rabbits and assuming that each pair produces a new pair of rabbits at each generation during only two generations.

Definition:

Given the two numbers F(0) = 1 and F(1) = 1

the Fibonacci numbers are obtained by the following expression: F(n+1) = F(n) + F(n-1)

Link with the Pascal's triangle

Could you prove the following property?

Cassini identity

. . .

Proposition:

$$F(n-1).F(n+1) = F(n)^2 + (-1)^{n+1}$$
 for $n \ge 1$

Can we get some intuition on the first ranks?

$$n = 1, F(0).F(2) = F(1)^{2} + 1 = 2$$

$$n = 2, F(1).F(3) = F(2)^{2} - 1 = 4 - 1 = 3$$

$$n = 3, F(2).F(4) = F(3)^{2} + 1 = 9 + 1 = 10$$

$$n = 4, F(3).F(5) = F(4)^{2} - 1 = 25 - 1 = 24$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini identity holds at rank *n*.

Apply the definition of F(n+2):

$$F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n).F(n+1)+F(n)^{2}$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini identity holds at rank *n*.

Apply the definition of F(n + 2): $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n).F(n+1)+F(n)^2$ Replace the last term using the recurrence hypothesis: $F(n)^2 = F(n-1).F(n+1) - (-1)^{n+1}$ $= F(n-1).F(n+1) + (-1)^{n+2}$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini identity holds at rank *n*.

Apply the definition of F(n + 2): $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n).F(n+1)+F(n)^2$ Replace the last term using the recurrence hypothesis: $F(n)^2 - F(n-1)F(n+1) - (-1)^{n+1}$

$$F(n) = F(n-1).F(n+1) - (-1)$$

= $F(n-1).F(n+1) + (-1)^{n+2}$

Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= $F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini identity holds at rank *n*.

Apply the definition of F(n+2):

 $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n).F(n+1)+F(n)^{2}$

Replace the last term using the recurrence hypothesis:

$$F(n)^{2} = F(n-1).F(n+1) - (-1)^{n+1}$$

= F(n-1).F(n+1) + (-1)^{n+2}

Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= $F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}$
Apply again the definition of Fibonacci sequence
 $F(n) + F(n-1) = F(n+1)$, we obtain:
 $F(n).F(n+2) = F(n+1)^2 + (-1)^{n+2}$

A Paradox (favorite puzzle of Lewis Carroll)

Consider a chess board (8 by 8 square) and cut it into 4 pieces, then reassemble them into a rectangle.

A Paradox (favorite puzzle of Lewis Carroll)

Consider a chess board (8 by 8 square) and cut it into 4 pieces, then reassemble them into a rectangle.

The surface of the square is $F(n)^2$ while the rectangle is F(n+1).F(n-1).

The Cassini identity is applied for n = 5, F(5) = 8.

- On one side, the surface is $8 \times 8 = 64$
- On the other side $13 \times 5 = 65$

What's wrong?

Explanation

The paradox comes from the representation of the "diagonal" of the rectangle which does not coincide with the hypothenuse of the right triangles of sides F(n + 1) and F(n - 1). In other words, it always remains (for any *n*) an empty space (corresponding to the unit size of the basic square of the chess board).

The greater n, the better the paradox because the *deformation* of the surface of this basic square becomes more tiny.

Computing F(n) fast

F(n) can be computed in $log_2(n)$ steps.

Proposition.

For all integers *n*: (a) $F(2n) = (F(n))^2 + (F(n-1))^2$ (b) $F(2n+1) = F(n) \times (2F(n-1)+F(n))$

Details (a) - Proof by induction

The base case n = 1 is true because

$$F(2) = (F(1))^2 + (F(0))^2 = 2$$

$$F(3) = F(1) \times (2F(0) + F(1)) = 3$$

Assume that the property holds for *n*, for both F(2n) and F(2n+1).

$$F(2(n+1)) = F(2n+1) + F(2n)$$

= $(F(n))^2 + (F(n-1))^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n))^2 + (F(n-1))^2 + 2(F(n) \times F(n-1)) + (F(n))^2$
= $(F(n) + F(n-1))^2 + (F(n))^2$
= $(F(n+1))^2 + (F(n))^2$

We again start by applying the defining recurrence of the Fibonacci numbers on F(2(n+1)+1)

$$= F(2(n+1)) + F(2n+1)$$

= $(F(n+1))^2 + F(n)^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n+1))^2 + 2(F(n-1) + F(n)) \times F(n)$
= $(F(n+1))^2 + 2F(n+1) \times F(n)$

Pictorially

Pictorially (from one node)

Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas, starting at 2 and 1 .

For some reasons that will be clarified later, the sequence is shifted backwards (we take the convention L(-1) = 2).

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

•
$$L(n+1) = L(n) + L(n-1)$$

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

$$L(n+1) = L(n) + L(n-1)$$

n	-1	0	1	2	3	4	5	6	7	8	9	10
F(n)		1	1	2	3	5	8	13	21	34	55	
L(n)	2	1	3	4	7	11	18	29	47	76	123	

• There are strong links¹ with Fibonacci numbers.

In particular, we established before that:

 $F(n+2) = 1 + \sum_{k=0}^{n} F(k).$

We have similarly:

 $L(n+2) = 1 + \sum_{k=-1}^{n} L(k)$ since the basic step of the induction is still valid². L(2) = L(-1) + L(0) + 1 = 2 + 1 + 1 = 4.

²It will be true for all the progressions where $u_1 = 1$

¹of course

. . .

A first Property

We can also easily show that the Lucas number of order n is the symmetric sum of two Fibonacci numbers:

Proposition.

$$L(n) = F(n-1) + F(n+1)$$
 for $n \ge 1$

Let *check* this property on the first ranks:

$$n = 2$$
, $L(2) = F(1) + F(3) = 1 + 3 = 4$
 $n = 3$, $L(3) = F(2) + F(4) = 2 + 5 = 7$
 $n = 4$, $L(4) = F(3) + F(5) = 3 + 8 = 11$
 $n = 5$, $L(5) = F(4) + F(6) = 5 + 13 = 18$

Proof by induction

- The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.
- Induction step: Let assume the property holds at all ranks $k \le n$ and compute L(n+1): Apply the definition of Lucas' numbers: L(n+1) = L(n) + L(n-1)

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$

Proof by induction

- The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.
- Induction step: Let assume the property holds at all ranks $k \le n$ and compute L(n + 1): Apply the definition of Lucas' numbers: L(n + 1) = L(n) + L(n - 1)Apply the induction hypothesis on both terms: L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)Apply now the definition of Fibonacci numbers for F(n + 1) + F(n) = F(n + 2) and F(n - 1) + F(n - 2) = F(n)

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$
Apply now the definition of Fibonacci numbers for
 $F(n + 1) + F(n) = F(n + 2)$ and $F(n - 1) + F(n - 2) = F(n)$
replace them in the previous expression:
 $L(n + 1) = F(n + 2) + F(n)$

which concludes the proof.

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2)

What happens if we generalize?

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2)

What happens if we generalize?

Proposition.

2.L(n) = F(n+3) + F(n-3)

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2)

What happens if we generalize?

Proposition.

$$2.L(n) = F(n+3) + F(n-3)$$

Proof.

We start from
$$L(n) = F(n+2) - F(n-2)$$

 $F(n+2) = F(n+3) - F(n+1)$ and
 $F(n-2) = F(n-1) - F(n-3)$
 $L(n) = F(n+3) - (F(n+1) + F(n-1)) + F(n-3)$
 $2.L(n) = F(n+3) + F(n-3)$

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

³The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step: $5.L(n) = F(n+5) + F(n-5)$

³The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step:
$$5.L(n) = F(n+5) + F(n-5)$$

Thus, we guess the following expression.

Proposition³.

$$F(k-1).L(n) = F(n+k) + (-1)^{k-1}F(n-k)$$
 for $k \le n$

³The formal proof is let to the reader

A natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive Fibonacci number tends to the Golden ratio:

$$\blacksquare \lim_{n\to\infty}\frac{F(n)}{F(n-1)}=\Phi$$

As this result is obtained by solving the following equation $x^2 = x + 1$ (Φ is the positive root) and does not depend on the first rank, this holds also for the Lucas' numbers.

A last result: the Zeckendorf's Theorem

Objective: Study the Fibonacci numbers as a numbering system. Here, we assume that the Fibonacci sequence starts at index 1 and not 0.

Let us first introduce a notation: $j \gg k$ iff $j \ge k + 2$. The Zeckendorf's theorem states that:

every positive integer *n* has a unique decomposition of the form: $n = F_{k_1} + F_{k_2} + \ldots + F_{k_r}$ where $k_1 \gg k_2 \gg \ldots \gg k_r$ and $k_r \ge 2$

The decompositions will never consider F_1 (since $F_1 = F_2$).

Lucas' numbers

Stern's sequence

Definition s(0) = 0 and s(1) = 1 s(2n) = s(n)and s(2n+1) = s(n) + s(n+1)

Stern's sequence

Definition s(0) = 0 and s(1) = 1 s(2n) = s(n)and s(2n+1) = s(n) + s(n+1)

Interpretation:

- If *n* is even, we keep the value s(n/2)
- If it is odd, we split it into two parts that are as balanced as possible.

Cultural aside

- Our purpose in the analysis of Stern (and other) progression is not to study the progression for itself
- but to develop insight about a mathematical object and learn/experience proof techniques

Get a first insight

First elements 1 1 2 1 5 2 5 4 7 3 8 4 5 1 6

Get a first insight

First elements

1	1	2	1	3	2	3	1	4	3	5	2	5	3	4	1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1	6
1	1	2	1	3	2	3	1	4	3	5	2	5	3	4	1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1	6

• What is the *best* representation?

Lecture 3 - Maths for Computer Science More on Fibonacci numbers and Stern sequence

└-Stern's sequence

Consider s(n) as a double entry array: s'(p,q), for $p \ge 0$ and $1 \le q \le 2^p$

1																							
1	2																						
1	3	2	3																				
1	4	3	5	2	5	3	4																
1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5								
1	6	5	9	4	11	7	10	3	11	8	13	5	12	7	9	2	9	7	12	5	13	8	11

What is the correspondence between elements in s and s'?

Consider s(n) as a double entry array: $s'(p,q) = s(2^p - 1 + q)$, for $p \ge 0$ and $1 \le q \le 2^p$

Progression of the elements along a given column

It is an arithmetic progression.

What is the argument of the corresponding proof?

Proof

Mathematically, we want to prove that $s'(p,q) = s'(p',q) + C_q$ where q is fixed and thus, C_q is a constant. Let P(n) the following property by induction on n. $s(2^p + k) = s(k) + s(2^p - k)$

Sum of each row

Sum of each row

- Successive powers of 3
- Prove this result (a natural way is by induction on *p*).

Looking carefully at row p

$$p=1$$

$$s(2) + s(3) = 2s(2) + s(1) = 3$$

$$p=2$$

$$s(4) = s(2)$$

$$s(5) = s(3) + s(2) \text{ and } s(3) = s(2) + s(1)$$

$$s(6) = s(3) = s(2) + s(1)$$

$$s(7) = s(4) + s(3) = 2s(2) + s(1)$$

total of this row: 6s(2) + 3s(1) 3 times the previous row.

■ p=3

A similar reasoning leads to: $18s(2) + 9s(1) = 3[6s(2) + 3s(1)] = 3^2[2s(2) + s(1)]$

• We guess: $3^{(p-1)}[2s(2) + s(1)] = 3^p$ that is proven by recurrence

Guess a relation between the terms in a row

 They are arranged in a symmetric order and more precisely, like a palindrome.

Proof

The pivot of row p is at q = 2^{p-1} + 1 Thus, it corresponds to n = 3 · 2^{p-1}

Maximum number in each row

Maximum number in each row

They are the successive Fibonacci numbers⁴

Enumeration of the rationals

Deriving the rationals

1/1	2/1		3/1				4/1
1/2		2/3				3/4	
	3/2				5/3		
1/3				2/5			
			5/2				
		3/5					
	4/3						
1/4							

Link with the Pascal's triangle

Consider the Triangle modulo 2.

• Combinatorial interpretation of
$$s(n)$$
 :
 $\sum_{i,j,2i+j=n} {i+j \choose i}$ modulo 2.

Similarities between the two sequences

- The rows in Pascal triangle sum up to powers (of 2)
- arithmetic progression along columns
- Deriving Fibonacci numbers
- Symmetry within the rows

In a picture

