
Fundamental Computer Science

Denis Trystram (inspired by Giorgio Lucarelli)

February, 2020

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are as in the definition of the Deterministic
Turing Machine, and ∆ describes the transitions and it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are as in the definition of the Deterministic
Turing Machine, and ∆ describes the transitions and it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-deterministic Turing Machine

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are as in the definition of the Deterministic
Turing Machine, and ∆ describes the transitions and it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-determinism

I the next step is not unique

•
•
•
•
•
•
...

•
•

start

accept or reject

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• accept

reject

Comparison deterministic vs
non-deterministic

Non-deterministic Turing Machine

Definitions

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.
We say that M accepts an input w ∈ Σ∗ if

(s,tw) `∗M (h, uσv)

for some h ∈ H, σ ∈ Σ and u, v ∈ Σ∗.

We say that M decides a language L if for each w ∈ Σ∗ the following
two conditions hold:

1. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration c satisfying (s,tw) `NM c

2. w ∈ L if and only if (s,tw) `∗M (h, uσv) for some σ ∈ Σ and
u, v ∈ Σ∗

Non-deterministic Turing Machine

Definitions

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.
We say that M accepts an input w ∈ Σ∗ if

(s,tw) `∗M (h, uσv)

for some h ∈ H, σ ∈ Σ and u, v ∈ Σ∗.
We say that M decides a language L if for each w ∈ Σ∗ the following
two conditions hold:

1. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration c satisfying (s,tw) `NM c

2. w ∈ L if and only if (s,tw) `∗M (h, uσv) for some σ ∈ Σ and
u, v ∈ Σ∗

Non-deterministic Turing Machine

Definitions (cont’d)

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.

We say that M computes a function f : Σ∗ → Σ∗ if for each w ∈ Σ∗

the following two conditions hold:

I (s,tw) `∗M (h,tv) if and only if v = f(w)

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Example

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p, q ∈ N, i.e., m = p · q
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p and q non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept

I What does non-deterministically mean?

I choose (p, q) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p < m and q < m non-deterministically

2. multiply p and q

3. compare a with p · q and if they are equal then accept, else reject

Exercise

I Consider a set A = {a1, a2, . . . , an} of positive integers and an
integer w ∈ N.
Give a Non-deterministic Turing Machine that recognizes the
language L = {A′ ⊆ A :

∑
ai∈A′ ai = w}.

1. choose non-deterministically a set A′ ⊆ A
2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration

Exercise

I Consider a set A = {a1, a2, . . . , an} of positive integers and an
integer w ∈ N.
Give a Non-deterministic Turing Machine that recognizes the
language L = {A′ ⊆ A :

∑
ai∈A′ ai = w}.

1. choose non-deterministically a set A′ ⊆ A
2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration

Exercise

I Consider a set A = {a1, a2, . . . , an} of positive integers and an
integer w ∈ N.
Give a Non-deterministic Turing Machine that recognizes the
language L = {A′ ⊆ A :

∑
ai∈A′ ai = w}.

1. choose non-deterministically a set A′ ⊆ A
2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree
I we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree

I we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree
I we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Discussion

I Non-deterministic Turing Machines seem to be more powerful than
deterministic ones

I we pay this in computation time

I next lectures: we will see what does this mean

Non-deterministic Turing Machine

Discussion

I Non-deterministic Turing Machines seem to be more powerful than
deterministic ones

I we pay this in computation time

I next lectures: we will see what does this mean

