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1 Preliminaries

1.1 Motivation et definitions

Graphs are a very natural mathematical structure used in Computer Science
(and many other fields). A graph is defined as a finite set of vertices, linked
according to a given relation. Formally, we define graph G as the pair (V,E).
V is the (finite) set of vertices. The set of edges E represents the relation
between the pairs of vertices. Usually, a graph is represented by a matrix
Ai,j = 1 if vertex i is linked with vertex j otherwise Ai,j = 0. This matrix is
called the adjacency matrix since it reflects the adjacency relations between
vertices. Graphs may be weighted, in this case we simply associate an integer
to each edge (similarly, we may also consider weights on the vertices).

Graphs are characterized by several notions which tell us about its struc-
ture: degree of a vertex (number of adjacent vertices denoted by δ(x) for
x ∈ V ), diameter (maximum distance between any pairs of vertices denoted
by D) and chromatic number (minimum number of colors for coloring the
graph, where any adjacent vertices are associated with different colors). This
last characteristic is hard to compute while both others are easy to obtain
(in polynomial time).

There is a duality between vertices and edges in graphs. We will inves-
tigate in this lecture some well-known path problems for the view point of
both edges and vertices. We refer naturally to the hamming distance (de-
fined as the minimum number of links to cross for reaching a vertex from
another one for non-weighted graphs) and to the natural distance obtained
by the minimum sum of weights of the crossed edges over the paths between
two vertices.

Definition.
We define the connected relation between any two vertices x and y as the
existence of a path from x to y.
A connected graph is a graph whose vertices are all connected.

The connected relation is an equivalence relation (reflexive, symmetric
and transitve) and the quotient graph is the graph composed of its connected
components.



1.2 Study of particular graphs

Let us start by studying structural properties for some particular regular
graphs (i.e. those whose degree is equal on each vertex).

Definitions.

• A cycle Cn of order n is a graph where each vertex i is linked with i−1
and i+ 1 modulo n.

• The complete graph Kn of order n is the graph where each vertex is
linked with all the others.

• An hypercube of rank k is defined recursively as follows:

H0 is reduced to one vertex.

Hk is obtained by linking every pair of relative vertices of two Hk−1.

H2 and H3 are the two classical square and cube.

Let us compute for all these graphs their number of edges, degree and
diameter.

Both first graphs are very simple. They have the same number of edges.
The first graph (the cycle) has a constant degree and its diameter is linear
in the order of the graph while the second has a linear degree and a constant
diameter. The hypercube is an intermediate graph with logarithmic degree
and diameter. More precisely:

• Cn has a degree 2, n edges and a diameter of bn2 c.

• Kn has a degree n(n−1)
2 , n edges and a diameter equal to 1.

• Hypercube Hk has n = 2k vertices (they double at each successive
ranks). Its vertices have a degree k = log2(n) since an edge is added
to each vertex at each successive rank.

The number of edges is obtained by writing a recurrence equation is
rather simple: The graph at rank k+1 is obtained by two copies of Hk

plus 2k edges for linking each relative vertex, thus, Nk+1 = 2×Nk +2k

with N1 = 0. We obtain: Nk = k × 2k−1.

The diameter can be computed easily with the natural encoding of
the hypercube using Gray codes: each vertex is encoded in a binary
notation using O(log2(n)) bits and its adjacent vertices are obtained
by complementing each bit one after the other. Thus, there is a path
from any vertex in crossing at most log2(n) other vertices.

There exist other graphs with a constant degree and low diameters (like
the de Bruijn graph whose diameter is in also og2(n).
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2 Eulerian paths

2.1 Existence

Let us first consider the problem of finding paths (or cycles) which visits
all the edges of a given graph G exactly once. This problem of determining
if such a tour (called eulerian cycle) exists is one of the oldest problem in
the field of Operational Research (it was introduced in 1736). It has been
studied by the famous swiss mathematician Leonard Euler for the specific
case of a tour going through all the bridges of the Koenigsberg town. The
graph is called eulerian if it admits such an eulerian cycle. This problem can
be characterized by the following proposition.

Proposition. A connected graph is eulerian iff all its vertices have an even
degree.

Proof (existence). Let us first establish three basic claims that will be
useful.

Claim 1. if all the degree are even (and not nul) then there exists a cycle.

Claim 2. A tour is an union of disjoint cycles.

Claim 3. if we remove a cycle in a tour then the degrees remain even.

The necessary condition of the proposition is straightforward. Let us
prove the sufficient condition.

By contradiction, let us assume that all the vertices are even and there
is no tour that contains all the edges. Let consider a tour with a maximum
number of edges. If we remove its edges, from Claim 3 the remaining edges
are even. Then, from Claim 1, there exists a cycle within these remaining
edges (say Γ). The contradiction comes from Claim 2 since the union of the
maximal tour plus the cycle Γ is another tour which contains more edges
than the initial one.

This proof can be adapted in a constructive way and thus, leads to an algo-
rithm. It is as follows:
Proof 2 (constructive). By induction on the number of edges.

• The basis case is simple to verify for m = 2 (where two vertices linked
by two edges correspond to the cycle of minimal length).

• Let consider a connected graph with m+ 1 edges where all its vertices
have an even degree. Let assume that the property holds for connected
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graphs of even vertices with k edges (k ≤ m), which means there exist
eulerian tours in these sub-graphs.

From Claim 1, there exists a cycle (let denote it by Γ) and consider the
sub-graph of G without the edges of Γ: G′ = (V −Γ, E′). By induction
hypothesis, there exists an eulerian Ci in each connected component of
G′ (removing the edges of a cycle did not change the parity of the
vertices). The eulerian tour of G is obtained by the concatenation of
pieces of Γ and the successive Ci.

2.2 Chinese postman problem

Let us now discuss the problem of determining a cycle that contains all
the edges when there exist some odd vertices. From the previous section,
we know that there is no eulerian cycle in this case and thus, any solution
should duplicate some edges. The problem is to duplicate the minimum.
This problem is known as the chinese postman and it is described below (in
a french equivalent version).

A postman moved recently from Grenoble to a small village in the country
side. He asked himself how to organize his daily tour by bike for distributing
the letters in the shortest possible time. The director of the post office gives
him the map and fortunately, the postman had some old souvenir of previous
lectures in Graph Theory. The tour starts from the post office and of course,
the postman has to go through every roads for distributing the letters before
coming back. The underlying graph is G = (V,E) where V is the (finite) set
of cross points and E is the set of the links between the cross roads weighted
by the distances.

This problem may be formulated mathematically in term of eulerian cy-
cles. Intuitively, the basic idea is to duplicate some edges that are carefully
chosen in order to use the previous construction of an eulerian tours that will
help the postman to determine the optimal tour (of minimal length) using
some simple mathematical properties.

Proposition. In any graph G = (V,E) the number of vertices of odd degree
is even.

Proof. First, let remark that the sum of all degrees is even (more pre-
cisely, Σx∈V δ(x) = 2|E| since each edge counts exactly for two vertices – its
extremities).

Σx∈V δ(x) = Σx∈Vevenδ(x) + Σx∈Vodd
δ(x).

As Σx∈Vevenδ(x) is obviously even, Σx∈Vodd
δ(x) should also be even.

Thus, the number of odd vertices is even.

Alternatively, this result can be proved by applying the Fubini’s principle
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Figure 1: The 3 perfect matching (k = 2).

Figure 2: Perfect matching (k = 3).

using the adjacency matrix.

As there exists a path between any pair of vertices of odd degree in Vodd,
we consider the complete graph whose vertices are the odd degree vertices
weighting the edges with the shortest paths (denoted by Kodd). Computing
the shortest paths is a classical problem, which can be solved in polynomial
time (for instance by the well-known Dikjstra’s algorithm).

Then, it is possible to make a correspondence between the optimal solu-
tion of the postman problem and a perfect matching of minimal weight in
Kodd. Recall that a matching is a set of edges without common vertices. It
is perfect if it has the maximum number of edges.

Proposition. The number of perfect matchings in a complete graph grows
exponentially with n.

Proof. by recurrence on n = 2k, let denote the number of perfect matching
by Nk.

• For k = 1, there is only one perfect matching N1 = 1.

• For k = 2, there are 3 different perfect matchings N2 = 3.

• For k = 3, there are 5 possibilities for a vertex to choose an edge
(2k − 1) which each leads to 3 perfect matchings Nk = (2k − 1).Nk−1.

The main steps of the algorithm for determining the optimal tour are the
following:

• Build the complete graph with the odd vertices and compute its weight
by the shortest paths.
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• Compute the perfect matching of minimal weight.

• Duplicate all the edges along the paths of this matching.

• Determine an eulerian tour in this new graph.

The optimality of this algorithm comes from the fact that the duplicated
edges are the minimum. Finally, all the vertices of the new graph are even
since the degree of the odd vertices in G is augmented by 1 (extremities of
the paths) and the other even vertices which are intermediate vertices of the
paths remain even.
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3 Hamiltonian paths

Let us now turn to the problem of paths going through the vertices of a
given graph. There are two types of Hamiltonian cycles: for any graphs
(structural) and the weighted variants for complete graphs.

Definition. An hamiltonian cycle is a tour that visits all vertices exactly
once.

3.1 Tournaments

Suppose that n players compete in a round-robin tournament. Thus, for
every pair of players-teams i and j, either i beats j or else j beats i. In-
terpreting the results of such a round-robin tournament can be problematic
because there might be all kind of cycles where x beats y, y beats z and
z beats x. Graph theory provides at least a partial solution to this prob-
lem. The results of a round-robin tournament can be represented with a
tournament graph defined as follows.

Definition. A tournament is a directed graph in which the vertices represent
players and the edges indicate the outcomes of the games. In particular, a
(directed) edge from i to j indicates that player i defeated j.

In a round-robin tournament, every pair of players has a match to play.
Thus, in a tournament graph there is either an edge from i to j or an edge
from j to i for every pair of vertices i and j. A directed Hamiltonian path
is a directed tour that visits every vertex exactly once.

We can show that in every round-robin tournament, there exists a ranking
of the players such that each player loses to the player ranked one position
higher. In other words:

Proposition. Every tournament graph contains a directed Hamiltonian
path.

Proof.
The proof is by induction.

• Basis. A tournament with 2 vertices is obviously hamiltonian.

• Let P (G,n) be the proposition that every tournament graph G with n
vertices contains a directed Hamiltonian path. Let consider a graph of
order n+ 1, the idea is to isolate an arbitrary vertex (let denote it by
x0) and to construct a hamiltonian path using directed Hamiltonian
paths in dimension n.

Let consider a directed Hamiltonian paths in dimension n. Every ver-
tex is linked with x0 by in- or out- coming edges,. as the graph has
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Figure 3: Principle of the construction of a directed Hamiltonian path in a
tournament.

no circuits, these edges are ordered like in figure 3. The new hamilto-
nian path is obtained by ordering the vertices of the first (in-coming)
vertices (which is a directed complete graph) by the hamiltonian path,
then going through x0 on the second group of out-coming edges, or-
dered similarly by the hamiltonian path.

3.2 Traveling salesman problem

This problem called TSP corresponds to determine a minimal hamiltonian
cycle in a weighted complete graphs Kn. Obviously, Kn is hamiltonian (it
exists n! hamiltonian paths), thus, the question here is to determine the
minimum one.

TSP is classical in Operational Research. Let us consider a salesman
who wants to organize the visit of his clients as best as possible. It consists
in visiting them in various cities with his vehicle. Of course, he must go in
every cities and his objective is to minimize the total distance done with his
vehicle. The only information he has is the list of the cities and a map with
all inter-cities distances. We assume any Euclidian distance (for instance the
weights correspond to number of kilometers between two cities). More for-
mally, the input of the problem is a weighted matrix with an infinite weight
on the diagonal.

Proposition. Christophides algorithm is a 3
2 -approximation.

Let us construct an efficient solution for this problem. It is well-known
that TSP is a hard problem, that means we can not expect a polynomial
time algorithm which solves exactly the problem. Let us construct a good
solution (not too far from the optimal) in polynomial time proposed. It pro-
ceeds in three phases.

Phase 1. Determine a minimal weight spanning tree T ∗. A spanning
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tree of G is a tree (connected graph with no cycle) with the same set of
vertices as G. Let us denote by ω the weight of a graph G (sum of the
weights on its edges). Determining a minimal weight spanning tree is easy
in polynomial time.

!

Figure 4: Example of an instance of TSP.

ωT ∗ is a lower bound of the value of the optimal tour.

!

Figure 5: Construction of an optimal spanning Tree.

Phase 2. Consider now the set Vodd of the vertices of T ∗ whose degrees
are odd.

We proved in the previous section that the cardinality of Vodd is even.
Let us construct now the perfect matching C∗ of minimum weight between
these vertices in Vodd.

2ωC∗ is a lower bound of the value of the optimal tour.

Phase 3. Let us now consider the graph G′ = T ∗ ∪ C∗.
All the vertices of G′ have an even degree.
We are now going to transform this graph in the following way: We

replace iteratively some edges by shortcuts.
While it exists a vertex of degree greater than 4, we remove two of these

consecutive edges and replace them by the opposite edge of this triangle
without disconnecting the graph.

This process leads to a feasible tour.
Such transformations do not increase the total weight.
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Figure 6: Final touch: replacing edges by short cuts (first possibility). This
solution disconnects the graph.

!

Figure 7: Final touch: replacing edges by short cuts (second possibility).

Finally we deduce that the value of such a tour is lower than 3/2 of the
optimal tour.
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