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1 Preliminaries

Number Theory is a field where the problems to solve are very easy to for-
malize and to understand, but very hard to prove! We recall below some
well-known examples:

• Perfect numbers conjecture: is there an odd perfect number? Perfect
numbers are numbers which are equal to the sum of their prime factors
(for instance 28 = 1 + 2 + 4 + 7 + 14).

• Goldbach’s conjecture: every even number can be written as a sum of
two primes.

• Twin primes: are there an infinite number of primes in the form (n, n+
2)?

The underlying techniques of number theory are very important in many
problems, including cryptography. We will investigate several classical re-
sults and some related properties.

2 Perfect divisibility

2.1 Basic results and definitions

Let a and b be two integers. a divides b if there is an integer k such that
ak = b. We also say that b is a multiple of a (notice here that a may be
negative). Let remark that according to this definition, every number divides
0.

The following properties are straightforward by applying directly the
definitions:

1. If a | b then a | bc ∀ integers c

2. If a | b and b | c then a | c

3. If a | b and a | b+ c then a | c

4. ∀c 6= 0, a | b iif ac | bc

5. If a | b and a | c then a | sb+ tc ∀ integers s and t



For instance for proving the last one, remark that there exist k1 and k2
such that a.k1 = b and a.k2 = c, which implies a(k1.s + k2.t) = sb + tc for
any s and t.

2.2 Greatest Common Divisor

Definition. GCD(a, b) is the largest number that is a divisor of both a and
b.

Proposition. GCD(a, b) is equal to the smallest positive linear combina-
tion of a and b1.

The proof considers m as the smallest positive linear combination of a
and b. We prove respectively that m ≥ GCD(a, b) and m ≤ GCD(a, b) by
using the general previous properties.

1. By definition, GCD(a, b) | a and GCD(a, b) | b, then, GCD(a, b) | sa+
tb for any s and t (and thus, in particular for the smallest combination).
Then, GCD(a, b) divides m and m ≥ GCD(a, b).

2. First, remark that m ≤ a because a = 1.a + 0.b is a particular linear
combination. We show that m | a.
By the division theorem, there exists a decomposition a = q.m + r
(where 0 ≤ r < m). Recall also that m = sa + tb for some s and t.
Thus, r can be written as (1 − qs)a + (−qt)b which is a combination
of a and b. However, as m is the smallest, we get r = 0.

Symmetrically m divides also b.

Then, m ≤ GCD(a, b).

�

Corollary. Every linear combination of a and b is a multiple of GCD(a, b)
and vice-versa.

Properties of the GCD

• Every common divisor of a and b divides GCD(a,b)

• GCD(ak,bk)=k.GCD(a,b) for all k > 0

• if GCD(a,b)=1 and GCD(a,c)=1 then GCD(a,bc)=1

• if a | bc and GCD(a,b)=1 then a | c

• GCD(a,b) = GCD(b,rem(a,b))
1This result is also known as Bezout identity.
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In this last property, rem denotes the reminder of the euclidian division
of a by b. It is detailed in the next section. The property is useful for
quickly compute the GCD of two numbers. This is in fact the basis of the
well-known Euclid’s algorithm! Let us prove it.

The idea is to show that the set of common divisors of a and b (called
D) is equal to the set of the common divisors of b and rem(a, b) (called D′).

• If d ∈ D, d | a and d | b.
As a = q.b+ rem(a, b), from property 3 of section 2.1 above, we have
d | rem(a, b). Then, d ∈ D′.

• If d′ ∈ D′, d′ | b and d′ | rem(a, b).

From property 5 above, d′ divides any linear combination of them, in
particular q.b+ 1.rem(a, b) thus, d′ | a which proves that d′ ∈ D.

�
Figures 1 and 2 give a geometrical interpretation of the euclidian divi-

sion and the CGD. It corresponds to the largest surface unit to obtain a
tessellation of the rectangle a× b.

rem(a,b)	

b	

a	

rem(b,rem(a,b))	

Figure 1: Geometric interpretation of the euclidian division of a by b. The
first step is on the left, the second one on the right.

3 Euclidian division and Primes

As we remarked in the previous section, divisibility is not always perfect. As
we learned in the elementary school, if one number does not evenly divide
another, there is a remainder left over.
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Figure 2: Final step of the geometric interpretation of GCD(a,b) as the
smallest area to pave the a by b rectangle.

Division theorem. Let a and b be two integers such that b > 0, then there
exists a unique pair of integers q and r such that a = qb+ r and 0 ≤ r < b.

Proving this theorem is two-fold: first the existence, and then the unique-
ness.

• Let E be the set of all positive integers in the form n = a− b.z. E is
not empty (well, for instance, it contains a) and E ⊂ N, thus, it has a
smallest element. Let denote it r.

We should verify that r < b. It is easy by remarking that r = a− b.z
for some z and r − b does not belong to E because r is the smallest
one. Thus, r − b < 0.

• Let us prove this part by contradiction. Suppose there exist two such
pairs of integers: a = qi.b+ ri for i = 1, 2.

Then, (q1 − q2).b+ r1 − r2 = 0.

Thus, b divides r1 − r2 and 0 ≤ r1 < b and 0 ≤ r2 < b

r1 − r2 = 0 and thus, q1 = q2.

�

Notations. rem(a, b) denotes the remainder of a by b.

Definition. A prime is an integer with no positive divisor other than 1 and
itself (otherwise, it is said a composite). 1 is neither a prime nor a composite.

Fundamental theorem of Arithmetic.
Every positive integer n can be written in an unique way as a product of

primes: n = p1p2...pj (p1 ≤ p2 ≤ ... ≤ pj).

We have again two results to prove: first that every integer can be written
as the product of primes, and second that this factorization is unique.
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• The first part will be proved easily by a strong induction: let assume
that all numbers can be decomposed accordingly up to n and let con-
sider n + 1. If it is prime the decomposition exists (it is it-self), if it
is a composite, each factor can be expressed as a product of primes by
the induction hypothesis.

• The uniqueness is obtained by contradiction: Let us first order the
primes of the decomposition by increasing values. Assume there are
two distinct decompositions into primes. Consider now the first prime
which is not the same in both products. One is the smallest and it is
easy to remark that it can divides the products of primes of the second
number, which is a contradiction.

�

The fundamental theorem provides a (partial) answer to the distribution
of prime numbers. Let π(n) the number of primes that are lower or equal
to n. The theorem states that the limit of π(n) when n goes to infinity is
n

log(n) . This result was guessed by Legendre in 1798 and proved one century
later.

Euclide proved that there are an infinity of primes by a simple argument
(contradiction about the largest prime over a finite set). Then, Euler proved
in the XIXth century the same result (using the fundamental theorem of
arithmetic).

4 Fermat little theorem

Statement:
For all prime number p and for all integer a, ap − a is divisible by p

(another way to write this theorem is ap ≡ a[p]).

The classical proof is obtained by recurrence on a, applying the Newton
binomial decomposition:

• The basis of the induction is straightforward since 1p ≡ 1[p]

• Assuming ap ≡ a[p] holds, let us write (a+ 1)p = ap + Σ1≤k≤pa
k
(
p
k

)
There is an interesting property on the binomial coefficients when p is
prime that is clear while looking at the Pascal triangle modulo [p] in
Figure 3. Apart the two extreme coefficients, they are all multiples of
p.

This can be proved by applying the definition(
p
k

)
= p!

k!(p−k)! = 1
k!p.(p− 1)(p− k + 1)
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Thus, p divides k!
(
p
k

)
but it has no common divisor with k! since

k ≤ p− 1.

This shows that p divides
(
p
k

)
.

(a+ 1)p ≡ ap + 1[p]

As ap ≡ a[p] by applying the induction hypothesis, we obtain (a+1)p ≡
a+ 1[p].

�
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Figure 3: Pascal Triangle modulo a prime number (7).

5 Perfect numbers

5.1 Definition

A perfect number (PN in short) is a number which is equal to the sum of
its proper divisors.

For instance, the first perfect numbers are the following:

• 6, which has 3 proper divisors, namely, 1, 2 and 3.

1 + 2 + 3 = 6.

• 28 whose 5 proper divisors are: 1, 2, 4, 7 and 14.

1 + 2 + 4 + 7 + 14 = 28.

• 496 has 9 proper divisors, namely, 1, 2, 4, 8, 16, 31, 62, 124 and 248.

1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 = 496.

A Mersenne number is a prime which has the following expression: 2α−1
for some given integer α.
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For instance, 3 = 22 − 1, 7 = 23 − 1, 31 = 25 − 1 are primes while
15 = 24 − 1 is not prime... Obviously, there exist primes which are not
Mersenne’s numbers (like 5, 13 etc.).

Property 1.
Show that 2α − 1 is only prime if α is prime.

The proof is based on the little Fermat theorem which was proved in the
previous section.

Notice that there are number of this form where α is prime and 2α − 1
is not (for instance α = 6 and 26 − 1 = 63 = 7× 9).

The objective of the next section is to study some characterizations of
perfect numbers. It remains several open questions like the existence of odd
perfect numbers or if there are an infinite number of such numbers.

Let us first prove some properties about even PM.

5.2 Properties

We are now going to prove the main result:

Property 2.
α is a prime. Let denote by PNα the number obtained by the following
expression: 2α−1(2α − 1) where 2α − 1 is a prime.

PNα is a perfect number and all the perfect numbers have this form.

Proof.
The list of factors Φi (for 0 ≤ i ≤ α− 1) of 2α−1 is: 1, 2, 4, ..., 2α−1.
The other factors of PNα are obtained by: Φi.(2

α − 1).
Summing up all these factors, we obtain the following expression:
Σi=0,α−2(2

i + 2α − 1) = Σi=0,α−22
i(1 + 2α − 1)

= 2αΣi=0,α−22
i

= 2α−1Σi=0,α−22
i+1

= 2α−1Σi=1,α−12
i

= 2α−1 2
α−1
2−1 .

This property was proved by Euclide in Principae IX-36.

There are nice properties behind perfect numbers, for instance it is easy
to show that the last digit of any perfect number (in usual decimal notation)
is 6 or 8.

Property 3 (coding PN by binary representation).
The binary representation of NP3 = 28 and NP5 are respectively (11100)2
and (111110000)2. It is natural to deduce the binary representation of any
NPα.
PNα = (11...10...0)2 (α times 1 followed by α− 1 times 0).
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Proof. The left part comes from 2α − 1 and the right part comes from the
shifts corresponding to the multiplication by 2α−1.

Property 4 (link with triangular numbers ∆n).
Let remark that PN2 = 6 = ∆3, PN3 = 28 = ∆7.
It is easy to show more generally that PNα = ∆2α−1.

Proof. The proof is straightforward by using the basic expression ∆n =
n(n+1)

2 for n = 2α − 1.
∆2α−1 = (2α−1)(2α−1+1)

2 = (2α−1)(2α)
2 = (2α − 1)2α−1
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