
Coding
Denis TRYSTRAM
Lecture notes Maths for Computer Science – MOSIG 1 – 2017

1 Summary/Objective

Coding the instances of a problem is a tricky question that has a big influence
on the way to obtain the solution. Even if Theory tells us that all reasonable1

codings of instances are equivalent, this is an important practical problem.

2 Hanoi towers

2.1 The standard solution

Let start by revisiting the standard (recursive) version of the Hanoi towers
problem.

Figure 1: Initial position of the Hanoi towers.

The principle of the solving method is recalled in Figure 2 below. The
disks are stacked on the first peg (taken as the left, denoted by D) and must
be placed at the arrival peg (denoted by A) in minimum number of moves.
The arrival is on the right peg if number of disks is odd and middle peg
otherwise. The pegs are numbered respectively 0, 1 and 2 from left to right
and any move is taken modulo 3 (which means for instance that the index
of the peg right to peg 2 is 0).

It is forbidden to move a disk on top of a smaller one.
Let n denote the number of disks.

We detail the first moves of the solution in the figures 3 to 7.
The analysis of these first moves evidences some properties, in particular,

the smallest disk moves every second steps. A more detailed observation
shows that it moves successively on all the pegs D → A, A → I, I → D,
and so on. Using the coding of pegs, this corresponds to the cycling process:

1which means in polynomial memory space



Figure 2: Principe of the recursive solution: move the n − 1 smallest disks
to the intermediate peg, move the largest one at its destination, move again
the n− 1 remaining disks on top of it.

D A	

Figure 3: Initial position of the Hanoi tower puzzle composed of 5 disks. The
arrival is on the right peg since the number of disks is odd.

0 → 2, 2 → 1, 1 → 3[3] = 0. Going further shows that the second smallest
disks moves every four steps (at step 2, 6, etc.) and we easily check that
the i-th smallest disk moves every 2i steps, while the largest disk moves only
once. As the moves of the smallest disk are fixed, there is only one possible
move left for the other disks (because of the constraint of moving only shorter
disks on larger ones).

All these remarks above lead to a pretty simple analysis as shown in the
next section.

2



Figure 4: First and second moves.

Figure 5: Moves 3 and 4.

2.2 Coding

Coding moves. The successive moves studied in the previous section may
be coded using a binary representation. Let m be the move index. The nat-
ural way is to associate a binary digit to each disk where the most significant
(leftmost) bit represents the largest disk as shown in Figure 8.

The rule for moving the disks have been briefly presented above, it is
represented in Figure 9. More precisely, the smallest disk moves every second
steps (odd m) and the other disks to move are determined by the number
of times m can be divided by 2 (i.e. the number of 0 bits at the right of the
configuration). The position of the disk to move is given by the rank of the
first bit at 1 in the binary configuration of the move (see Figure 10). For
instance, at move 12 (01100)2, this rank is 3 (the third disk is moving).

The departure and arrival pegs (indexed by 0 and 2) for the mth move
can also be determined elegantly from the binary representation of m using
bitwise operations. Recall that the pegs are numbered 0, 1 and 2 from left to
right and the disks are all stacked in peg 0 at the beginning, their destination
is on peg 1 or 2 according to the parity of the number of disks. Move m is
from peg (m AND m - 1) modulo 3 to peg ((m OR m - 1) + 1) modulo 3.

Coding positions. Here, we are interested in coding the positions of the
disks at a given move instead of the moves. The bit string is read from left to
right and each bit can be used to determine the location of the corresponding
disk. More precisely:

• A 0 indicates that the largest disk is on the initial peg, while a 1
indicates that it is on the destination peg (right peg if number of disks
is odd and middle peg otherwise). Observation: a straight sequence of
1’s or 0’s means that the corresponding disks are all on the same peg.

3



Figure 6: Moves 5 and 6.

Figure 7: Move 7.

• A bit with a different value to the previous one means that the cor-
responding disk is located in one position to the left or right of the
previous one. Whether it is left or right is determined by the following
rule: Let k be the number of greater disks that are located on the same
peg as their first greater disk. Add 1 to k if the largest disk is still on
its initial peg (the left one). If k is even, the disk is located on the peg
to the right, if it is odd, the disk is located one peg to the left (in case
of even number of disks and vice versa otherwise).

Let us detail how this process works on a particular configuration: Move
(216)10 = (11011000)2. Figures 11 to 14 detail the positions of the successive
disks.

As n is even, the arrival peg is the middle one. The bit representing the
largest disk is 1, thus it is on the middle peg. The second disk is also coded
by 1, so it is stacked on top of it, on the middle peg.

The coding of disk 3 is 0, which means that it is on another peg. Since
k = 1 (it is odd), it is one peg to the left, i.e. on the left peg.

Disk 4 is coded by 1, so it is on another peg. Since k is odd (it is equal
to 1), it is on the peg to the left, i.e. on the right peg according to the
wraparound properties. The following bit is also equal to 1, it is stacked on
top of it, on the same peg.

As the next disk (the 6th) is 0, it is on another peg. Since k is even
(k = 2), the disk is one peg to the right, i.e. on the left peg. Both remaining
disks (7th and 8th) are also 0, thus they are stacked on the left peg.

4



(xn-1,	…,	x0)2	

Figure 8: Labelling the disks by a bit string.

00001	
00010	
00001	
00100	
00001	
00010	
00001	
01000	
00001	
00010	
00001	
00100	
00001	
…	

00001	
00010	
00001	
00100	
00001	
00010	
00001	
01000	
00001	
00010	
00001	
00100	
00001	
…	 2	

8	4	

Figure 9: Position of the moved disks (left) and periodic pattern (right). The
right bit corresponds to the smallest disk which moves every second moves,
the second smallest moves every 4 moves, etc.

2.3 Using Gray code

Gray code is a binary coding system where the numbers are expressed by
binary digits, but contrary to the classical positional number system, Gray
code ensures that each number differs from its predecessor by exactly one
bit changed. We can use this coding for describing the solution of the Hanoi
Towers (see Appendix for the definition and properties of Gray codes).

If the moves are coded with a reflected Gray code (starting at zero) then
the rank of the bit changed corresponds to the disk to move.

5



00001	
00010	
00011	
00100	
00101	
00110	
00111	
01000	
01001	
01010	
01011	
01100	
01101	
…	

Figure 10: The binary representation of the move index m gives the disk to
move (rank of the first bit at 1 from the right – in blue).

Figure 11: Position of the two largest disks.

3 Josephus

The second problem chosen to illustrate elegant coding is the Josephus’ prob-
lem (also called survival problem) which was analyzed in detail in another
chapter. Let us recall it briefly: n items are placed successively on a circle.
Starting from the first item, we remove every second remaining item. The
index of the last item is called J(n).

In this problem, powers of 2 play again an important role. Let us use the
binary representation of n and J(n):

n =
∑j=m

j=0 bj .2
j = bm.2m + bm−1.2

m−1 + ...+ b1.2 + b0
n = (1bm−1...b1b0)2 since by definition of m bm = 1
k = (0bm−1...b1b0)2 since k < 2m

Thus, using the closed formula for J(n):
J(n) = (bm−1...b0bm)2.
In other words, the solution is obtained by a simple shift of the binary

representation of n.

6



Figure 12: Position of the third disk.

Figure 13: Position of the fourth and fifth disks.

Applied to n = 41 = (101001)2
J(41) = (010011)2 = 19.

7



Figure 14: Position of the remaining disks.

Appendix: Gray codes

This code was invented by a french mathematician of the XIXth century
(Louis Gros in 1872), reinvented by Franck Gray at Bell’s lab in 1930.

There exist several variants of Gray codes. Let us present the most
popular one, namely the reflected Gray code whose principle is depicted in
Figure 15. The 1-bit Gray code is simply 0 and 1. The next one (for 2-bits)
is obtained by mirroring the 1-bit code and prefix it by 0 and 1. The next
ones are obtained similarly (see Figure 15).

The most important characteristic is the coding from one position to the
next is to flip only one bit. There is a simple way to determine the bit that
changes from a position to the next one:

if the number of bit at 1 in position i is even, then flip the last bit,
otherwise, flip the bit left to the rightmost bit equal to 1.

0	
1	

0	
1	
1	
0	

00	
01	
11	
10	
10	
11	
01	
00	

0	
0	
1	
1	

0	
0	
0	
0	
1	
1	
1	
1	

Figure 15: Construction of reflected Gray codes (n = 1, 2, 3).

Gray code can easily be determined from the classical binary representa-
tion as follows (see Figure 16):

(xn−1xn−2...x1x0)2
shift right: (0xn−1xn−2...x1)2
Take the exclusive OR (bit-to-bit) between the binary code and its shifted

number:
(xn−1(xn−2 ⊕ xn−1)...(x0 ⊕ x1))G.

8



For instance in the example of the figure, the binary code of 5 = (00101)2
is (0⊕ 0)(0⊕ 0)(0⊕ 1)(1⊕ 0)(0⊕ 1) = (00111)G.

00001	
00011	
00010	
00110	
00111	
00101	
00100	
01100	
01101	
01111	
01110	
01010	
01011	
…	

00001	
00010	
00011	
00100	
00101	
00110	
00111	
01000	
01001	
01010	
01011	
01100	
01101	
…	

Figure 16: From binary to reflected Gray code.

9


