Binomial Coefficients and Subsets Enumeration

the basis of combinatorics

Master MOSIG: Mathematics for Computer Science Jean-Marc.Vincent@imag.fr

These notes are only the sketch of the lecture: the aim is to apply the basic counting techniques to the binomial coefficients and establish combinatorial equalities. **References:** Concrete Mathematics: A Foundation for Computer Science *Ronald L. Graham, Donald E. Knuth and Oren Patashnik* Addison-Wesley 1989 (chapter 5)

- **THE PROBLEM: Subset Enumeration**
- 2 ALGEBRAIC APPROACH
- COMBINATORIAL RULES
- 4 EXAMPLES

ALGEBRA

Rules

SUBSET ENUMERATION

 $\binom{n}{k}$ is the number of ways to choose k elements among n elements

http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html

For all integers $0 \le k \le n$

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \tag{1}$$

ALGEBRA

RULES

SUBSET ENUMERATION

 $\binom{n}{k}$ is the number of ways to choose k elements among n elements

http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html

For all integers $0 \le k \le n$

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \tag{1}$$

Prove the equality by a combinatorial argument

Hint: the number of sequences of k different elements among n is $n(n-1)\cdots(n-k+1)$ and the number of orderings of a set of size k is k!.

BASIC PROPERTIES

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{2}$$

Prove it directly from Equation 1

For all integers $0 \le k \le n$

$$\binom{n}{k} = \binom{n}{n-k} \tag{3}$$

Prove it directly from 2 Prove it by a combinatorial argument

ALGEBRA RULES

BASIC PROPERTIES

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{2}$$

Prove it directly from Equation 1

For all integers $0 \le k \le n$

$$\binom{n}{k} = \binom{n}{n-k} \tag{3}$$

Prove it directly from 2

Prove it by a combinatorial argument

Hint: bijection between the set of subsets of size k and????.

Exercise

Give a combinatorial argument to prove that for all integers $0 \le k \le n$:

$$k\binom{n}{k} = n\binom{n-1}{k-1} \tag{4}$$

EXAMPLES

PASCAL'S TRIANGLE

Recurrence Equation

The binomial coefficients satisfy

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \tag{5}$$

Prove it directly from Equation 1
Prove it by a combinatorial argument

ALGEBRA

RULES

PASCAL'S TRIANGLE

Recurrence Equation

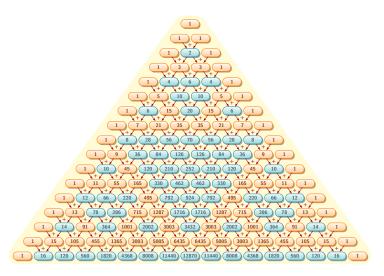
The binomial coefficients satisfy

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \tag{5}$$

Prove it directly from Equation 1
Prove it by a combinatorial argument

Hint: partition in two parts the set of subsets of size k; those containing a given element and those not.

PASCAL'S TRIANGLE(2)



Thanks to Tikz/Gaborit

- THE PROBLEM : Subset Enumeration
- 2 ALGEBRAIC APPROACH
- 3 COMBINATORIAL RULES
- 4 EXAMPLES

THE BINOMIAL THEOREM

For all integer n and a formal parameter X

$$(1+X)^n = \sum_{k=0}^n {n \choose k} X^k$$
 (Newton 1666) (6)

THE BINOMIAL THEOREM

For all integer *n* and a formal parameter *X*

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k \text{ (Newton 1666)}$$
 (6)

Prove it by a combinatorial argument

Hint: write
$$(1+X)^n = \underbrace{(1+X)(1+X)\cdots(1+X)}$$
 in each term chose 1 or X, what is

the coefficient of X^k in the result (think "vector of n bits").

Exercises

Use a combinatorial argument to prove :

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Use the binomial theorem to prove (give also a combinatorial argument)

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} = 2^{n-1}$$

SUMMATIONS AND DECOMPOSITIONS

The Vandermonde Convolution

For all integers m, n, k

$$\sum_{i=0}^{k} {m \choose j} {n \choose k-j} = {m+n \choose k} \tag{7}$$

Prove it by a combinatorial argument

Hint: choose k elements in two sets one of size m and the other n.

Exercise

Prove that

$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n} \tag{8}$$

Hint: Specify Equation 7

SUMMATIONS AND DECOMPOSITIONS (2)

Upper summation

For all integers $p \leq n$

$$\sum_{k=n}^{n} \binom{k}{p} = \binom{n+1}{p+1} \tag{9}$$

Exercises

Establish the so classical result

$$\sum_{k=1}^{n} {k \choose 1}$$

Compute

$$\sum_{k=2}^{n} {k \choose 2}$$
 and deduce the value of $\sum_{k=1}^{n} k^2$

- THE PROBLEM : Subset Enumeration
- 2 ALGEBRAIC APPROACH
- COMBINATORIAL RULES
- 4 EXAMPLES

THE MAIN RULES IN COMBINATORICS (I)

Bijection Rule

Let A and B be two finite sets if there exists a bijection between A and B then

$$|A| = |B|$$
.

Summation Rule

Let A and B be two **disjoint** finite sets then

$$|A \cup B| = |A| + |B|.$$

Moreover if $\{A_1, \dots A_n\}$ is a partition of A (for all $i \neq j$, $A_i \cap A_j = \emptyset$ and $\bigcup_{i=0}^n A_i = A$)

$$|A|=\sum_{i=0}^n|A_i|.$$

THE MAIN RULES IN COMBINATORICS (II)

Product rule

Let A and B be two finite sets then

$$|A \times B| = |A| \cdot |B|$$
.

Inclusion/Exclusion principle

Let $A_1, A_2, \cdots A_n$ be sets

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^k \sum_{S \subset \{1,\cdots,n\}, |S|=k} \left| \bigcap_{i \in S} A_i \right|.$$

Exercises

Illustrate these rules by the previous examples, giving the sets on which the rule apply.

- 1 THE PROBLEM : Subset Enumeration
- 2 ALGEBRAIC APPROACH
- 3 COMBINATORIAL RULES
- 4 EXAMPLES

DERANGEMENT

Definition

A derangement of a set S is a bijection on S without fixed point. Number of derangements ! $n \stackrel{def}{=} d_n$.

DERANGEMENT

Definition

A derangement of a set S is a bijection on S without fixed point.

Number of derangements $!n \stackrel{\text{def}}{=} d_n$.

Inclusion/Exclusion principle

$$!n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n}(n-n)!$$
$$= n! \sum_{i=0}^n \frac{(-1)^i}{i!} \stackrel{n \to \infty}{\sim} n! \frac{1}{e}$$

Recurrence relation

Show that

$$d_n = (n-1)(d_{n-1} + d_{n-2}) = nd_{n-1} + (-1)^n$$

